
Iman Mohtashemi, Janos Fodor Kis, Mathew Kump, Vijay Kulkarni, Thermo Fisher Scientific, 355 River Oaks pkwy, San Jose, Ca, USA, 95134

Component DetectionABSTRACT
Purpose: Demonstration of a scalable component detection algorithm with near constant time
complexity when scaled across compute clusters

Methods: A map-reduce implementation of component detection using the Apache Spark™ cluster-
computing framework is demonstrated using Mobius (C#) and Python implementations.

Results: We demonstrate a component detection algorithm that leverages the distributed compute
framework (Apache Spark) which results in several orders of magnitude of performance. We further
demonstrate a near constant time complexity on 1000 serum metabolomics raw files providing a
framework to build large scale statistical power in peak picking/component detection studies.

INTRODUCTION
Component detection is a computationally intensive process of data reduction of highly redundant
LC-MS data to biologically meaningful compound results. To our knowledge, no component detection
algorithm exists that can process and scale on massive LCMS data sets. ParSeC (Parallel Sequence
Component Detection) solves this problem by implementing a component detection workflow using
the map reduce programming model. The algorithm is naturally distributed across any cluster. The
algorithm is simple and scalable. Most importantly, all the delegate functions (e.g., peak detection,
isotope clustering or component assembly), are completely interchangeable. In a compute cluster
environment, all steps of the workflow can be parallelized. Initial prototype proof of concept (POC)
results show speed improvements of several orders of magnitude with near constant time scalability.
The algorithm / framework described will ultimately enable users to analyze massive data sets not
previously possible, build statistical power in their studies and scale dynamically and on-demand.

MATERIALS AND METHODS
We demonstrate proof of concept in two phases.

• An existing legacy algorithm is modified to be independent of Thermo Scientific™ .raw file format.
Thermo Scientific LCMS .raw files are converted to the Parquet file format which is a free and
open-source column-oriented data store of the Apache Hadoop™ ecosystem. We leverage the
map-reduce programming model while gaining the 100x speed improvements of in-memory
computing of Apache Spark vs. the traditional file-based map-reduce. Functions are modularized to
be deployed at scale on any compute cluster (e.g. AWS, Azure, Google).

• A second python implementation of a more granulized and fully parallelizable Component
Detection algorithm is also presented.

• Three High Resolution Accurate Mass (HRAM) data sets were evaluated:

• 2 tea metabolomics LCMS runs ~ 40 Mb (qualitative analysis)

• 109 beer metabolomics LCMS runs ~21 Gb (medium scale)

• 1000 serum metabolomics LCMS runs ~ 112 Gb (large scale)

CONCLUSIONS
 LCMS raw data was transformed to a distributed parquet format for parallel ingestion and high performance

processing. A map-reduce programming model was successfully applied to a legacy desktop algorithm. In
addition a new prototype algorithm was also developed fully paralyzing computational tasks at the scan level.

 We demonstrated the same code can be scaled across a cluster compute node using the AWS EMR platform
with near constant time. We show POC by detecting 80 million features across 1000 metabolomics LCMS runs
in ~6 minutes.

 Qualitative analysis shows reasonable overlap between our existing desktop component detection algorithm at
the feature level. All legitimate features > 1e6 intensity in test files detected in Thermo Scientific™ Compound
Discoverer™ software were also detected in the prototype version of Parsec. A qualitative review across the
dynamic range indicates the presence of detectable features down 5 orders of magnitude. The functional
programming model enables interchangeable peak detection/isotope clustering techniques to be incorporated
with little modification to the execution code or framework.

Future Work

Our initial goal was to demonstrate a new scalable programming model applied to the LCMS domain. Future
work will include modification/replacement of the delegate detection functions while verifying sensitivity/specificity
using precision recall curves on well-annotated big data sets. Related activities will also include streaming scan
data and improving the file conversion/upload bottlenecks ensuring a performant end-to end user experience
enabling large scale statistical power

REFERENCES
1. Dean et al., MapReduce: Simplified Data Processing on Large Clusters. ODSI 2004.

2. Tautenhahn et al., Highly sensitive feature detection for high resolution LC/MS Bioinformatics, 2008

ACKNOWLEDGEMENTS
We would like to thank the Thermo Fisher CRC committee for funding this research effort as well as Swapnil
Ahuja for project support activities.

TRADEMARKS/LICENSING
© 2018 Thermo Fisher Scientific Inc. All rights reserved. Apache Spark and Apache Hadoop are trademarks of
the Apache Software Foundation. All other trademarks are the property of Thermo Fisher Scientific and its
subsidiaries. This information is not intended to encourage use of these products in any manner that might
infringe the intellectual property rights of others.

Parsec- A ‘Big Data’ Component Detection Algorithm and Framework

Figure 2. LCMS Feature Map Figure 3. Component Detection data
reduction pipeline

The primary goal of LCMS is to identify all the chemical components in a sample. However, LCMS data is
often rich, redundant and requires several layers of data reduction to funnel toward a biologically relevant
compound list. Many algorithms have been developed over the years termed ‘Component Detectors’ to do
such data reduction. While there are many strategies employed (e.g. the choice of peak detection models,
isotope clustering and ordering of steps) they all follow a general funneling pipeline. The input data is a
mass spectrum in the time domain and as such spectra are clustered, grouped, peak detected, charge
state and adduct correlated and reduced to a compound list. Data reduction can be several orders of
magnitude. Many of these individual steps can be computationally intensive and such workflows are
prohibitive in large data sets. We demonstrate a map-reduce data reduction strategy as described below.

A hands on example Performance Characterization

EMR Cluster

var components = scanData
.Map(KVCeMassTraces)
.Map(KVCePeakDetect)
.Map(KVCeIsotopePeaks)
.Map(KVCeAssembleComponents);

return components;

features = spark.read.parquet(i) \
.rdd.map(lambda scan: pc.kv_scan(scan, 1)).groupByKey() \
.flatMap(lambda file: pc.bin_masses(file)) \
.flatMap(lambda fileMassBin: pc.create_mass_traces(fileMassBin)) \
.flatMap(lambda trace: pc.detect_peaks_peakutils(trace[1], sn)) \
.map(lambda p: pc.map_peak(p,rtTolerance)) \
.reduceByKey(lambda p1, p2: p1 + p2) \
.map(lambda p: pc.DetectSmallMoleculeFeaturesFaster(p,err,False)) \

Motivation (Map-Reduce)

Figure 4. Canonical map-reduce example. Words are counted from an arbitrary number of files

Figure Map-reduce implementation of Component Detection (Only Feature Detection Shown)

Slower approach, really only parallel processing raw file representations

Faster distributed approach distributing data at the scan level

All major steps were characterized using AWS EMR (elastic map
reduce) clusters. Clusters were bootstrapped with the necessary
python dependencies. 109 beer metabolomics and 1000 serum
metabolomics files were analyzed. Trace generation, trace + peak
detection and trace + peak detection + feature assembly
performance is shown. With the described cluster configuration over
80 million features were detected from 1000 serum metabobolomics
runs in ~6 minutes

Legacy Algorithm Adaption
Figure 6. Performance evaluation.

Figure 5. Cluster Configuration.

https://notebooks.azure.com/im281/libraries/parsecdemo

spark-submit --deploy-mode cluster --driver-memory 8g --executor-memory 8g --num-executors 1243 --executor-cores 5
run.py s3n://parsecdata/parquetfiles/* s3n://parsecdata/results/output

Preliminary Qualitative Analysis

Mass Traces Peak Detection Feature Assembly

Thermo Scientific™ Compound Discoverer™ Parsec Annotation Viewer/Editor

2 orders

3 orders 4 orders 5 orders

Compoent results identical to the
desktop version (data not shown)

blacktea_1 #926 RT: 7.10 AV: 1 NL: 2.42E8
F: FTMS + p ESI Full ms [50.00-1000.00]

188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222
m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

R
el

at
iv

e
A

bu
nd

an
ce

195.0867
z=1

196.0900
z=1

197.0928
z=1

200.6593
z=?

194.2969
z=?

blacktea_1 #322 RT: 2.53 AV: 1 NL: 1.01E6
F: FTMS + p ESI Full ms [50.00-1000.00]

118.0 118.5 119.0 119.5 120.0 120.5 121.0 121.5 122.0 122.5 123.0
m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

R
el

at
iv

e
A

bu
nd

an
ce

120.0644
z=1

118.0848
z=?

121.0266
z=?

123.0536
z=?

122.0590
z=1

blacktea_1 #454 RT: 3.51 AV: 1 NL: 1.06E5
F: FTMS + p ESI Full ms [50.00-1000.00]

351.5 352.0 352.5 353.0 353.5 354.0 354.5 355.0 355.5 356.0 356.5 357.0 357.5 358.0 358.5 359.0 359.5 360.0
m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

R
el

at
iv

e
A

bu
nd

an
ce

355.0652
z=1

356.0693
z=1

357.0586
z=1 359.0274

z=?

358.0641
z=?

blacktea_1 #102 RT: 0.81 AV: 1 NL: 3.43E4
F: FTMS + p ESI Full ms [50.00-1000.00]

132.80 132.85 132.90 132.95 133.00 133.05 133.10 133.15
m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

R
el

at
iv

e
A

bu
nd

an
ce

133.0855
z=?

132.9827
z=1

132.9573
z=?

133.1007
z=?

133.0167
z=1

132.9941
z=1

blacktea_1 #1270 RT: 9.60 AV: 1 NL: 3.11E4
F: FTMS + p ESI Full ms [50.00-1000.00]

510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600
m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

R
el

at
iv

e
A

bu
nd

an
ce

525.3596
z=1

547.3436
z=?

515.1144
z=?

573.2855
z=?

587.2003
z=?

555.1459
z=1

533.2955
z=?

510.1577
z=1

526.3600
z=1

595.1359
z=?551.3092

z=?
556.1544

z=1511.1550
z=1

568.3322
z=?

523.3398
z=? 585.2583

z=?

BeerMetabolome1_0minA_01 #897 RT: 1.70 AV: 1 NL: 9.13E6
T: FTMS + p ESI Full ms [100.00-1500.00]

816.0 816.5 817.0 817.5 818.0 818.5 819.0 819.5 820.0 820.5 821.0 821.5 822.0
m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Re
la

tiv
e

Ab
un

da
nc

e

818.2777
z=1

819.2797
z=1

820.2853
z=1

1 order

PO65316-EN0518S

	Slide Number 1

