Parsec- A ‘Big Data’ Component Detection Algorithm and Framework

Iman Mohtashemi, Janos Fodor Kis, Mathew Kump, Vijay Kulkarni, Thermo Fisher Scientific, 355 River Oaks pkwy, San Jose, Ca, USA, 95134

ABSTRACT

Purpose: Demonstration of a scalable component detection algorithm with near constant time
complexity when scaled across compute clusters

Methods: A map-reduce implementation of component detection using the Apache Spark™ cluster-
computing framework is demonstrated using Mobius (C#) and Python implementations.

Results: We demonstrate a component detection algorithm that leverages the distributed compute
framework (Apache Spark) which results in several orders of magnitude of performance. We further
demonstrate a near constant time complexity on 1000 serum metabolomics raw files providing a
framework to build large scale statistical power in peak picking/component detection studies.

INTRODUCTION

Component detection is a computationally intensive process of data reduction of highly redundant
LC-MS data to biologically meaningful compound results. To our knowledge, no component detection
algorithm exists that can process and scale on massive LCMS data sets. ParSeC (Parallel Sequence
Component Detection) solves this problem by implementing a component detection workflow using
the map reduce programming model. The algorithm is naturally distributed across any cluster. The
algorithm is simple and scalable. Most importantly, all the delegate functions (e.g., peak detection,
isotope clustering or component assembly), are completely interchangeable. In a compute cluster
environment, all steps of the workflow can be parallelized. Initial prototype proof of concept (POC)
results show speed improvements of several orders of magnitude with near constant time scalability.
The algorithm / framework described will ultimately enable users to analyze massive data sets not
previously possible, build statistical power in their studies and scale dynamically and on-demand.

MATERIALS AND METHODS

We demonstrate proof of concept in two phases.

« An existing legacy algorithm is modified to be independent of Thermo Scientific™ .raw file format.
Thermo Scientific LCMS .raw files are converted to the Parquet file format which is a free and
open-source column-oriented data store of the Apache Hadoop™ ecosystem. We leverage the
map-reduce programming model while gaining the 100x speed improvements of in-memory
computing of Apache Spark vs. the traditional file-based map-reduce. Functions are modularized to
be deployed at scale on any compute cluster (e.g. AWS, Azure, Google).

« Asecond python implementation of a more granulized and fully parallelizable Component
Detection algorithm is also presented.

e Three High Resolution Accurate Mass (HRAM) data sets were evaluated:
e 2 tea metabolomics LCMS runs ~ 40 Mb (qualitative analysis)
e 109 beer metabolomics LCMS runs ~21 Gb (medium scale)

e 1000 serum metabolomics LCMS runs ~ 112 Gb (large scale)

w Slower approach, really only parallel processing raw file representations
Visual C#

var components = scanData
.Map(KVCeMassTraces)
.Map(KVCePeakDetect)
.Map(KVCelsotopePeaks)
.Map(KVCeAssembleComponents);
return components;

Faster distributed approach distributing data at the scan level

python

features = spark.read.parquet(i) \
.rdd.map(lambda scan: pc.kv_scan(scan, 1)).groupByKey() \
flatMap(lambda file: pc.bin_masses(file)) \
flatMap(lambda fileMassBin: pc.create_mass_traces(fileMassBin)) \
flatMap(lambda trace: pc.detect_peaks_peakutils(trace[1], sn)) \
.map(lambda p: pc.map_peak(p,rtTolerance)) \
.reduceByKey(lambda p1, p2: p1 + p2) \
.map(lambda p: pc.DetectSmallMoleculeFeaturesFaster(p,err,False)) \

Figure 2. LCMS Feature Map

Raw Files

File2 Kaamd

Component Detection

The primary goal of LCMS s to identify all the chemical components in a sample. However, LCMS data is
often rich, redundant and requires several layers of data reduction to funnel toward a biologically relevant
compound list. Many algorithms have been developed over the years termed ‘Component Detectors’ to do
such data reduction. While there are many strategies employed (e.g. the choice of peak detection models,
isotope clustering and ordering of steps) they all follow a general funneling pipeline. The input data is a
mass spectrum in the time domain and as such spectra are clustered, grouped, peak detected, charge
state and adduct correlated and reduced to a compound list. Data reduction can be several orders of
magnitude. Many of these individual steps can be computationally intensive and such workflows are
prohibitive in large data sets. We demonstrate a map-reduce data reduction strategy as described below.

T
Spectral Peak
E I Isotope Pattern
h Features
g | e d
i ‘L'dkl"&' Components

Figure 3. Component Detection data
reduction pipeline

Motivation (Map-Reduce)

The Overall MapReduce Word Count Process

Input Splitting Mapping Shuffling Reducing Final Result
List(K2,V2) K2,List(V2)
Ka,vi Bear, (1,1) Bear, 2
. Deer, 1 — o
Bear, 1 List(K3,V3)
\ Bear, 2

Dear Bear River
Car Car River
Deer Car Bear

‘Car Car River

River, (1,1)

Figure 4. Canonical map-reduce example. Words are counted from an arbitrary number of files

FlatMap Traces FlatMap Peaks
List(Fileld,5canList) List{Peak)

ETL -> Parquet Map Scans
All data List(Fileld,ScanlList)

{Fileld1,Tracel} {Peak1}
. File 1,Scans {Fileld2,Trace1} {peak2}
— — - {Fileld1,TraceN} {Peaks}

Directory {Fileld1,Trace1} {Peak4}
{Fileld2,Trace2} {Peak5}

{Fileld2,TraceN} {peakN}

bandll {File 2,Scans}

Group by Key
List(Fileld_RT,Peaks)

FlatMap Peaks Map Features

List{Feature) List(Fileld,Features)

Group by Key
List(Fileld,Features)
{Fileld1_RT,Peaks}
{Fileld2_RT,Peaks}
{Fileld1_RT,Peaks}
{Fileld2_RT,Peaks}

{Feature4} {Fileld1,Featurel}
{Feature5} {Fileld2,Feature2} _
{FeatureN} {Fileld1,FeatureN} {File 2,Features}

Figure Map-reduce implementation of Component Detection (Only Feature Detection Shown)

{Fileld1_RT,Peaks}
{Fileld2_RT,Peaks}

{Featurel} {Fileld1,Featurel}
{Feature2} {Fileld2,Feature2} {File 1 Features}
{Feature3} {Fileld1,FeatureN} ‘ !

A han

https://notebooks.azure.com/im281/libraries/parsecdemo

In [5]:

In [182]:

In [183]:

In[]:

1.5 -

10 4

0.5

o0

In [39]:

In [48]:

In [24]:

ds on example

= Jupyter

Titas] Notebooks hosted on
“&td Microsoft Azure

OEEFd0
Bl

Parallel injestion of Parquet files

Parguet is a distributed file format. The suttle but important part of this workflow is that we do not directly work with raw files. We work with a 'representation’ of
the raw file which can simply be characterized as a collection of scans. This is the signal we are concenrned with and all further processing will leverage this
concept. As such we have converted the files to the parquet format. Parguet is a distributed file format. It has sewveral advantages including columnar storage:
fast column queries that benefits reading only few celumns for all rows (all scans in all raw files) and is a compressed format. In Apache Spark, there is support
for parallel injestion of all files using a simple read command. We simply point to a directory and read in all the files as distributed objects.

#read all parquet files in a directory. Note that collect() is an action sending all the data to the driver
scans = spark.read.parquet(data/*").take(5)
for s in scans:

print(s.FileName, s.RetentionTime}

blacktea_1.raw 6.1887533333333335
blacktea_1.raw 6.211921666666667
blacktea_1.raw 6.243086666666667
blacktea_1.raw 6.27391999999595985
blacktea_1.raw 6.383753333333333

Mapping Raw Files * Optimization Opportunity

The driver program will always point to a directory of parquet-converted files. In the V 1.0 of Parsec we read all the scan data from all the files and then
groupbykey(). Note that the groupbykey() operation is an expensive operation as it triggers a shuffling and transfer of data across the network as data is
partitioned across nodes, However, in the context of the full Component Detection workflow this initial step is almost negligable

#Filter blacktea_l.raw by BasePeakIntensity
filteredScans = scans.rdd.filter(lambda s: s.FileName == ‘blacktea_1l.raw' and s.BasePeakIntensity > 1le7).take(5)
for f in filteredScans:

print(f.FileName, f.BasePeaklIntensity)

blacktea_l.raw 250080816.8
blacktea_1.raw 213495824.0
blacktea_l.raw 54395568.8
blacktea_1l.raw 23300888.8
blacktea_1l.raw 23759064.0

#group the scans by keys which represents two raw files
files = scans.rdd.map(lambda scan: pc.CreatekKVpair(scan, 1)).groupByKey().take(5)
print(files)

[('blacktea_l.raw’, <pyspark.resultiterable.ResultIterable object at @x7ff99e@8d9dds8:), ('blacktea_Z.raw', <pyspark.resultiterab
le.ResultIterable object at @x7ff99@8d9a58>)]

CreateMassTracesSpark()

The CreateMassTracesSpark function takes an individual bin as input. First thing it does is create 2 sorted lists of the mz points. The first sorted list is by
intensity. The second sorted list is by mass. It loops over the intensity sorted list, starting with the most intense. It then goes to the mass sorted list, and finds all
other mz points within 10ppm (searching both higher and lower values). A scaling factor is applied to the 10ppm tolerance to make the tolerance larger on
smaller mz values. All mz points that are within this tolerance are gathered into 1 mass trace object. These mz points are marked processed to not be used
again. The output from the CreateMassTracesSpark is a key value pair. The key is the raw file name, the value is a list of mass traces that came from this bin.

#Get mass traces for all files. Note that the delegate function CreateKVpair() takes two arguments (scan and msOrder)
#for demonstration we filter for caffeine (195.8867 M+H)

traces = scans.rdd.map(lambda scan: pc.CreateKVpair(scan, 1)).groupByKey() \

.flatMap(lambda file: pc.BinMassesSpark(file)) \

.flatMap(lambda fileMassBin: pc.CreateMassTracesSpark(fileMassBin)) \

.filter(lambda s: s[1].HighestIntensityMass » 195.87 and s[1].HighestIntensityMass < 195.1)

.collect()

Lo dmn ey Ovarlay Mass Trace of 185 ,0867

a5 4 as
3.0 3.0 -

EX 2.5 -

=
£7n-

Flensty
u
o

10 4 10

J o o o !1

0.0 oo

[G 66 6.8 7.0 7.2 7.4 76 6.2 [6.6) 70 7z B EX) [[6.6) 70 7z 7.4 76
Faetention Time Pt o Time

Parallel Peak Detection

We are now ready to detect all the peaks from all traces from all files.

peaks = scans.rdd.map(lambda scan: pc.CreateKVpair(scan, 1)).groupByKey() \

.flatMap(lambda file: pc.BinMassesSpark(file))

.flatMap(lambda fileMassBin: pc.CreateMassTracesSpark(fileMassBin)) \

.flatMap(lambda trace: pc.MapCdl2PeakUtils(trace[1],5)).filter(lambda p: p.Intensity » 2e7).take(5)

#print out all the detected peaks from all files

print('Peaks:")

print('FileID m/z Intensity RT")

for p in peaks:
print(p.FileID,p.MZ,p.Intensity,p.RT)

Peaks:

FileID m/z Intensity RT

blacktea_1.raw 138.86524658283125 1€19815904.8 7.8972566666666665
blacktea_1.raw 195.8867156982422 250038816.8 7.0972566666666665
blacktea_2.raw 138.8651692528297 161466496.€ 7.183633333333332
blacktea_2.raw 195.88657336014862 399965472.8 7.183833333333332
blacktea_2.raw 196.8081641845783 28324878.8 7.183833333333332

An End-to-End Example for Feature Detection

features = spark.read.parquet('data/*") \

.rdd.map({lambda scan: pc.Createkvpair(scan, 1)).groupByKey() \
.flatMap(lambda file: pc.BinMassesSpark(file)) '

.flatMap(lambda fileMassBin: pc.CreateMassTracesSpark(fileMassBin)) \
flatMap(lambda trace: pc.MapCdl2PeakUtils(trace[1], 1)) %
.map(lambda p: pc.MapPeaks(p,8.1)).groupBykey()

.flatMap(lambda p: pc.DetectSmallMoleculeFeaturesFaster(p[1],58)) \
.map(lambda f: pc.MapFeature(f)).persist().collect()

Performance Characterization

EMR Cluster

Clone Terminate AWS CLI export

pUthon

Cluster: Parsec-m4.16xlarge-30 Waiting ciusier ready afer 1ast step completed

history Events Steps Configurations Bootstrap actions
Connections: Hue. Spark History Server. Resource Manager . (Visw All) c
Master public DNS: €2-54-193-3-57 us-west-1.compute amazonaws.com S5H
Tags: View Al Edit

Summary Configuration details
1D: |- SOJDONCOSANFFY Release label: emr-510.0
Creation date: 2018-05-10 09.32 (UTC-7} Hadoop distribution: Amazon 2.7.3
Elapsed time: 1 hour, 31 minutes Applications: Hive 231 Pig0 170 Hue 401,

Network and hardware Security and access
Avallability zone: us-west.1c Key name: parsec
Subnet ID: subnel-817abids EC2 instance profile: EMR_EC2_DefaultRole
Master: Running 1 m4 16xiage EMR role: EMR_DefauliRole

Auto-terminate: No Spark 220 Gore: Running 48 md 16xaige Auto Sealing role: EMR_auloScaling_Defaultiole
Termination Off Change Log URI: s3//aws10gs-216691758510-us-west Tazk: - Visible to all users: All Change
protection: etaslicmapreduce/ Security groups for £0.543ebr33 (ElacticapReduce
EMRF S consistent Disabled Master: masier)
vina: Security groups for £9-933dbcry (ElasticMapReduce
Custom AMI ID: ~ Core & Task: slave)

Figure 5. Cluster Configuration.

spark-submit --deploy-mode cluster --driver-memory 8g --executor-memory 8g --num-executors 1243 --executor-cores 5
run.py s3n://parsecdata/parquetfiles/* s3n://parsecdata/results/output

Mass Traces ‘ Peak Detection ‘

Feature Assembly

Mass Traces Chromatographic Peaks Features
1 |1 /\/l
g:r--v 15 é %“,x(l * E g fm »fx E
o E I : o - I . e . I ‘
Features All major steps were characterized using AWS EMR (elastic map
-) reduce) clusters. Clusters were bootstrapped with the necessary
< python dependencies. 109 beer metabolomics and 1000 serum
¢ metabolomics files were analyzed. Trace generation, trace + peak
.~ detection and trace + peak detection + feature assembly
I . performance is shown. With the described cluster configuration over

80 million features were detected from 1000 serum metabobolomics

runs in ~6 minutes

Figure 6. Performance evaluation. w
Legacy Algorithm Adaption Visual C#

var scanData = scans.Map(s => KVlsonFiles(s))
.Map(s => ConvertToPscansNew(s))
LGroupByKey();

Broadcast variable
All Scans

Broadcast variable var broadcastPeaks = sparkContext.

All Peaks] Broadcast(ranFilePeaks.Collect());
var broadCastScans = sparkContext.

Broadcast(scanData.Collect());

File1:Components
Eile2:Components

Generate XIC
and Detect
Traces (Peak
Detection)

Generate
Mass Traces

Detect

IsotopeClusters Assemble

Components

EC2 Scaling Performance vs # of Files
Performance vs # of Files

00

s Compoent results identical to the
desktop version (data not shown)

400

300

Time [min}
TIME (MIN)

00

o 10 20 30 an 50 GO 70 a0 %0 100

Files to Process 0 20 40 60 80 100 120 140

FILES TOr PROCESS
—8—Cument —@—Parsec ——

Preliminary Qualitative Analysis

Parsec Annotation Viewer/Editor

Thermo Scientific™ Compound Discoverer™

e

£
ijgzd

b =, is i = FLEST
1 - - - T FE) W
= lackiea_1 [= =
- RT. 3.78 e e 2
e AA B5056678.89 it o o .
AH: 1188670032 L] { e
100 &
! |

nnnnnnnnnnnn

$.9.¥.8.9.% 3.5 8 F

CONCLUSIONS

» LCMS raw data was transformed to a distributed parquet format for parallel ingestion and high performance
processing. A map-reduce programming model was successfully applied to a legacy desktop algorithm. In
addition a new prototype algorithm was also developed fully paralyzing computational tasks at the scan level.

We demonstrated the same code can be scaled across a cluster compute node using the AWS EMR platform
with near constant time. We show POC by detecting 80 million features across 1000 metabolomics LCMS runs
in ~6 minutes.

= Qualitative analysis shows reasonable overlap between our existing desktop component detection algorithm at
the feature level. All legitimate features > 1e6 intensity in test files detected in Thermo Scientific™ Compound
Discoverer™ software were also detected in the prototype version of Parsec. A qualitative review across the
dynamic range indicates the presence of detectable features down 5 orders of magnitude. The functional
programming model enables interchangeable peak detection/isotope clustering techniques to be incorporated
with little modification to the execution code or framework.

Future Work

Our initial goal was to demonstrate a new scalable programming model applied to the LCMS domain. Future
work will include modification/replacement of the delegate detection functions while verifying sensitivity/specificity
using precision recall curves on well-annotated big data sets. Related activities will also include streaming scan
data and improving the file conversion/upload bottlenecks ensuring a performant end-to end user experience
enabling large scale statistical power

REFERENCES

1. Dean et al., MapReduce: Simplified Data Processing on Large Clusters. ODSI 2004.

2. Tautenhahn et al., Highly sensitive feature detection for high resolution LC/MS Bioinformatics, 2008

ACKNOWLEDGEMENTS

We would like to thank the Thermo Fisher CRC committee for funding this research effort as well as Swapnil
Ahuja for project support activities.

TRADEMARKS/LICENSING

© 2018 Thermo Fisher Scientific Inc. All rights reserved. Apache Spark and Apache Hadoop are trademarks of
the Apache Software Foundation. All other trademarks are the property of Thermo Fisher Scientific and its
subsidiaries. This information is not intended to encourage use of these products in any manner that might

infringe the intellectual property rights of others. -
ThermoFisher
SCIENTIFIC

PO65316-EN0518S

	Slide Number 1

