
Introduction
The SARS-CoV-2 pandemic underscores the urgent need for rapid viral glycoprotein 

research. Viral glycoproteins, crucial for host cell attachment, are key targets for 

neutralizing antibodies produced by vaccines. While RNA sequencing reveals viral 

mutations, it does not capture post-translational modifications (PTMs) like glycosylation, 

which influence receptor binding and infection efficiency. A comprehensive 

understanding of glycoprotein glycosylation is essential for the development of effective 

vaccines and therapeutic strategies. 

Native mass spectrometry (native MS or nMS) is a powerful tool in the mass 

spectrometry (MS) arsenal for characterizing glycosylation on viral glycoproteins. 

Unlike other methods, native MS maintains protein structures intact and introduces 

them into the mass spectrometer in a configuration that closely resembles their natural 

state in biological conditions. This technique provides an unaveraged snapshot of the 

solution conditions, allowing for the simultaneous detection of different proteoforms, 

such as varying glycosylations, which is challenging to achieve with other structural 

biology techniques. Native MS can identify both the number and types of glycoform 

compositions present.

However, challenges remain in native MS and native top-down MS characterization of 

glycoproteins as the heterogeneity leads to complex spectra. This study utilizes the high 

quadrupole mass filter coupled with proton transfer charge reduction (PTCR) on Thermo 

Scientific™ Orbitrap™ Tribrid™ platforms to decipher the complexity of glycoproteins, 

including ones from the COVID family using native MS.1-2 Top-down analysis employing 

electron transfer dissociation (ETD) provides structural, sequence, and PTM site 

information. In summary, the combination of data-independent acquisition-proton 

transfer charge reduction (DIA-PTCR) (Figure 1) and native top-down MS approaches 

enables a comprehensive characterization of viral glycoproteins.

Decipher intricate glycoproteins using data-independent 
acquisition-proton transfer charge reduction and native 
top-down mass spectrometry
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Experimental 
Materials 
•	 Ammonium acetate, Sigma (P/N 372331-10G)

•	 Fisher Chemical™ Optima™ LC/MS grade water,   
(P/N 10505904)

Sample preparation
Human Fetuin (hFet) was purchased from Sigma-Aldrich. 

Nucleocapsid protein (Nc), spike protein receptor-binding  

domain (RBD), and full-length spike protein (S-protein) were 

purchased from Acro Biosystems. Proteins were buffer 

exchanged into 200 mM ammonium acetate using an Amicon™ 

Ultra centrifugal filter (Sigma-Millipore). Samples were diluted to 

0.1–0.2 mg/mL prior to static nanospray experiments.

MS experiments 
Glycoprotein analyses were performed on a Thermo Scientific™ 

Orbitrap™ Ascend Structural Biology Tribrid™ mass spectrometer. 

Native top-down analysis of human Fetuin was performed on a 

Thermo Scientific™ Orbitrap Eclipse™ Tribrid™ mass spectrometer. 

Data analysis
The data were analyzed using Thermo Scientific™ BioPharma 

Finder™ 5.0 software.

Figure 1. Overlapping windows of DIA-PTCR spectra are acquired and stitched together for 
deconvolution
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Table 1. MS parameters for MS1 and DIA-PTCR experiments

Source parameters

Spray voltage (+V) 1,200–1,400 1,200–1,400

Capillary temperature (°C) 275 275

Orbitrap scan parameters 

Method type Full MS DIA-PTCR

Scan range (m/z) 2,000–16,000 3,000–16,000

Application mode Intact Intact

Pressure mode High (20 mtorr) High (20 mtorr)

Resolution
7,500 at m/z 200

480,000 at m/z 200 
7,500 at m/z 200 for  

S-protein

RF lens (%) 60 60

AGC target value 200 400

Max injection time (ms) 100 1,000

Isolation mode - Quadrupole

Isolation window (MS2) - 5–20 Th

Microscans 3 10

Source fragmentation (V) 25–100 25–120

Source CID compensation 
scaling 0.01–0.02 0.01–0.02

PTCR reaction time (ms) - 7–15

PTCR reagent target - 6.00E+05
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Results and discussion
1. DIA-PTCR and native top-down MS reveal more 
proteoforms and structure of hFet
hFet (Uniprot P02765) is a heavily modified glycoprotein with a 

predicted mass of approximately 37 kDa. It contains two N-linked 

glycosylation sites, suggested seven O-linked glycosylation sites, 

and seven phosphorylation sites. The enriched PTMs lead to 

partially resolved spectrum of hFet from full scan analysis  

(Figure 2A). By leveraging the high quadrupole mass filter 

combined with PTCR on the Orbitrap Ascend Structural 

Biology MS, we initially compared the spectral quality obtained 

using the ion trap versus the quadrupole isolation (Figure 2B).  

Subsequently, we performed gas-phase fractionation and charge 

reduction using DIA-PTCR analysis to uncover the numerous 

glycoforms concealed in the full scan data (Figure 3).

When the precursor at m/z 3,662 (highlighted in orange in  

Figure 2A) was isolated in both the ion trap and quadrupole with 

a 5-Th isolation width, the signal-to-noise ratio (S/N) was nearly 

6-fold higher with quadrupole isolation (Figure 2B, left). As a 

result, after conducting PTCR, the S/N of the charge-reduced 

envelope was significantly higher with quadrupole isolation 

compared to ion trap isolation (Figure 2B, right). Similarly, the 

isolation of the near-baseline low intensity precursor at m/z 3,500 

resulted in improved isolation accuracy and a higher S/N with 

quadrupole isolation compared to ion trap isolation (Figure 2C). 

Figure 2. (A) MS1 spectrum of hFet; (B) ion trap vs. quadrupole isolation of 5-Th followed by PTCR at m/z 3,662 for S/N 
comparison; and (C) m/z 3,500 for isolation accuracy comparison
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Additionally, performing PTCR revealed new charge envelopes 

by separating previously overlapping signals in the MS1 full scan, 

leading to the discovery of new proteoforms. Comparing MS1 

glycoform assignments to those obtained using DIA-PTCR with 

Biopharma Finder software, a significantly greater number of 

proteoforms were assigned from the latter approach (Figure 3). 

Figure 3. A comparison of hFet glycoforms assigned by Biopharma Finder software using MS1 and DIA-PTCR
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Structurally, although according to the sequence, the N-terminus 

of the B-chain in hFet is connected to the C-terminus of the 

A-chain via a propeptide, native top-down electron-transfer and 

higher-energy collision dissociation (EThcD) fragmentation shows 

that the B-chain is disulfide-bonded to the N-terminus of the 

A-chain through Cys32–Cys358 (Figure 4). 

Figure 4
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Figure 4. (A) EThcD spectrum and (B) sequence map to resolve chain connection of hFet
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2. DIA-PTCR and top-down analyses of Nc
We applied the same methodology to the proteins from the COVID 

family, including Nc, S-protein RBD, and S-protein. The Nc protein 

may be glycosylated depending on its leader sequence and 

expression system. A full MS scan of 49 kDa Nc revealed partially 

resolved peaks atop the elevated baseline. DIA-PTCR analysis 

across the entire m/z range not only resolved the charge states 

and identified PTMs on the 49 kDa species but also revealed 

Figure 5. (A) A full MS scan of 49 kDa Nc revealed partially resolved peaks atop the elevated baseline; (B) DIA-PTCR at 
different desolvation voltages
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dimers near 100 kDa (Figure 5A). Some unexpected peaks 

were observed around 70 kDa and 90 kDa (Figure 5B), 

which are presumed to be impurities in the sample.  

DIA-PTCR reveals that the Nc protein is adorned with 

either covalent modifications or noncovalent interactions. 

Mild and strong desolvation conditions disclose varying 

extents of noncovalent (+Na) and covalent interactions 

(Figure 5B).

5



Figure 6. Denovo sequencing was used to identify molecular weight (MW) shift on the N-terminal due to an unknown tag

The Nc sample was received with a confidential N-terminal 

tag, which hindered the assignment of top-down fragments. To 

address this, we performed top-down sequencing to obtain the 

tag mass. Such analysis revealed an N-terminal monoisotopic 

mass shift on methionine of 3,686.6794 Da (Figure 6). 
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Figure 7. MS2-ETD spectrum of Nc reveals the exposed N-terminus and dimerization domain
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Deciphering the unknown tag mass benefits and subsequently 

enhances top-down data analysis for structural elucidation. 

Fragments of Nc protein generated from top-down ETD are 

predominantly c-ions, reflecting an exposed N-terminus. This 

aligns with the structure featuring a flexible N-terminus and a 

dimerized C-terminus (Figure 7).
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C-terminal fragments from the top-down HCD experiment show 

characteristic patterns of –H2O and +Na shifts in accurate mass. 

These shifts reveal Na+ binding sites within the C-terminus, which 

is rich in basic residues (Figure 8). In summary, top-down analysis 

Figure 8. MS2-HCD spectrum of Nc discloses the Na+ binding region
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provided insights into the previously unknown N-terminal tag and 

indicated the dimerization domain at the C-terminus, but did not 

reveal any evidence of glycosylation.
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3. DIA-PTCR of PNGase F treated spike protein RBD to 
assign O-glycosylated proteoforms
The spike protein RBD, featuring a combination of N- and 

O-glycosylations, exhibited a broad molecular weight (MW) 

distribution centered around 31.8 kDa in DIA-PTCR analysis 

(Figure 9A). Cleavage of N-glycans using PNGase F shifted the 

MW center to 27.6 kDa, indicating the removal of N-glycans. 

A major mass loss of 4,216 Da corresponds to the removal of 

two N-glycans with the composition Hex(9)HexNAc(10)dHex(3)

Figure 9. (A) DIA-PTCR shows comparison of RBD MW before and after N-deglycosylation; (B) examples of O-glycoforms 
assignment from DIA-PTCR analysis

NeuAc(1). After N-glycan removal, the MW profile significantly 

simplified, allowing for the assignment of glycan compositions 

for major O-glycoforms (Figure 9B). Additionally, two proteoforms 

arising from sequence variants with mass difference of 70 Da  

(R37T and K21I) were identified. In summary, DIA-PTCR 

combined with accurate MW measurement at a resolution of 

480,000 on O-linked RBD, enabled the assignment of O-glycan 

compositions. 

Figure 9
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Figure 10. (A) A full MS1 scan of spike protein only displays unresolved species; (B) MS2 spectrum collected at 5-Th quadrupole isolation 
followed by 5-ms PTCR at m/z 7,280; (C) deconvolution of MS2-PTCR at m/z 7,280 (D) DIA-PTCR with 10-Th isolation and 5 ms reaction 
time shows monomer MW ranging from 160 to 200 kDa due to heavy glycosylation, along with some impurities

4. DIA-PTCR analysis of SARS-Cov-2 S-protein
The full-length SARS-CoV-2 S-protein, the most complex 

glycoprotein in the SARS-CoV-2 family, plays a crucial role in  

the virus' function, infectivity, and immune evasion. Using the 

DIA-PTCR approach (5-Th quad isolation followed by 5-ms PTCR) 

easily resolves the unresolved charge states in full scan  
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(Figures 10A and 10B). The deconvoluted spectrum in Figure 

10C clearly shows a pattern of mass shift of 7,000–8,000 Da, 

indicating complexity of global glycosylation. DIA-PTCR facilitated 

easy determination of spike protein monomer MW (160–200 kDa) 

and revealed impurities at 70 kDa and 144 kDa (Figure 10D).
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Conclusions
•	 The extended quadrupole isolation range, reaching up to  

m/z 8,000, enhances isolation accuracy and S/N compared to 
ion trap isolation, thereby advancing native omics studies, as 
it not only works for top-down but for DIA-PTCR as well.

•	 Combining high quadrupole isolation with gas-phase charge 
reduction facilitates the rapid assessment of the MW of 
complex glycoproteins.

•	 DIA-PTCR streamlines the complete MW measurement 
process for glycoproteins.

•	 Native top-down analysis not only identifies the sequence but 
also unveils structural insights into glycoproteins such as hFet 
and RBD.

References
1.	 Huguet, R., et al. Proton transfer charge reduction enables high-throughput top-down 

analysis of large proteoforms. Analytical Chemistry 2019, 91(24), 15732–15739.

2.	 Schachner, L.F., et al. Exposing the molecular heterogeneity of glycosylated 
biotherapeutics. Nature Communications 2024, 15(1), 3259.

http://www.thermofisher.com/nativems

