PRODUCT SPECIFICATIONS

# Acclaim Surfactant columns

### A simple solution to difficult challenges

Thermo Scientific<sup>™</sup> Acclaim<sup>™</sup> Surfactant columns are high-efficiency specialty silica columns for separating anionic, nonionic, and cationic surfactants.





#### Features

- Ideal selectivity for separation of anionic, nonionic, and cationic surfactants
- Excellent peak shapes for cationic surfactants
- Improved resolution for ethoxylated surfactants
- Compatible with highly aqueous mobile phases
- Methods compatible with various detectors
- Broad range of applications

### Ideal selectivity for the separation of anionic, nonionic, and cationic surfactants

The Acclaim Surfactant column are designed for, and ideally suited to, the separation of a variety of different surfactants. The Acclaim Surfactant columns, both the Acclaim Surfactant and the Acclaim Surfactant Plus, incorporate a proprietary silica-based bonded phase that offers ideal selectivity and unprecedented capacity for separating cationic, nonionic and anionic surfactants in a single run. The Acclaim Surfactant column is best suited for use with Ultraviolet (UV) and Evaporative Light Scattering (ELSD) detection and the Acclaim Surfactant Plus column for LC-MS detection (please refer to the Acclaim Surfactant Plus brochure for more information).

Surfactants are widely used in industrial, agricultural, and pharmaceutical markets, in products as diverse as pesticides, detergent powders, petroleum products, cosmetics, and pharmaceuticals. Their separation and identification can be a challenge due both to the diversity of surfactants and complexity of the sample matrix.



The separation of surfactants is typically accomplished using high performance liquid chromatography (HPLC). Reversed-phase and ion-exchange chromatography are the most popular approaches, but normal-phase and size-exclusion chromatography are also used, depending on the application. Although many HPLC stationary phases are available and have been used for the analysis of surfactant formulations, none of these columns have been designed specifically for this application, nor are they capable of separating anionic, nonionic, and cationic surfactants in a single chromatographic run. Figure 1 shows the difference between a conventional C18 column and the Acclaim Surfactant column for the separation of a mixture of anionic and nonionic surfactants. The Acclaim Surfactant column provides excellent separation, whereas the C18 column fails to resolve all the surfactants under the same conditions.

### Excellent peak shapes for cationic surfactants

Reversed-phase chromatography, using a C18 column, is often used for the separation of anionic surfactants. When analyzing cationic surfactants, however, it is often difficult to obtain sharp, symmetrical peaks due primarily to the presence of free silanols. The novel bonding chemistry of the Acclaim Surfactant phase allows for effective deactivation of free silanols toward positively charged cationic surfactants, resulting in excellent peak shapes, as shown in Figure 2. By comparison, a C18 column tested under similar conditions demonstrates an extended retention time and peak tailing.



Figure 1. Separation of a mixture of surfactants showing remarkable selectivity.



Figure 2. Analysis of a cationic surfactant showing excellent peak shape.

#### Improved resolution for ethoxylated surfactants

As a consequence of its novel column chemistry, the Acclaim Surfactant column exhibits a unique polarity that provides significantly improved resolution for individual oligomers of ethoxylated surfactants compared with conventional C18. Figure 3 provides a comparison between the Acclaim Surfactant column and a conventional C18 for the characterization of Triton X-100. The Acclaim Surfactant column exhibits significantly improved resolution between the oligomers.

### Compatible with highly aqueous mobilephase conditions

High-density C18 columns are often unsuitable for analyzing strongly hydrophilic hydrotropes, such as sodium naphthalene sulfonate and xylene sulfonate. The problem arises because these analyses require a highly aqueous mobile phase that often leads to undesirable "dewetting". As illustrated in Figure 4, the novel chemistry of Acclaim Surfactant column provides excellent resolution between isomers of xylene sulfonate, while under the same condition little or no retention is observed on the conventional C18 column.



| Dimensions   | 4.6 × 150 mm                                                                                                          |
|--------------|-----------------------------------------------------------------------------------------------------------------------|
| Mobile phase | Acetonitrile/0.1 M NH <sub>4</sub> 0Ac, pH 5.4<br>v/v 40/60 for Acclaim Surfactant<br>v/v50/50 for competitors column |
| Temperature  | 30 °C                                                                                                                 |
| Flow rate    | 1 mL/min                                                                                                              |
| Inj. volume  | 10 µL                                                                                                                 |
| Detection    | UV, 225 nm                                                                                                            |
| Sample       | Triton X-100 (1000 ppm)                                                                                               |
|              |                                                                                                                       |

Figure 3. Improved resolution between oligomers in ethoxylated surfactants.



Figure 4. Analysis of a strongly hydrophilic hydrotrope.

#### Methods compatible with various detectors (ELSD, UV, MS conductivity detection)

Ultra-violet (UV) absorbance is the most popular detection method in HPLC, due to its ease of use and sensitivity (Figures 3–5 and 18–20). The drawback with this approach is that the analyte must have a chromophore to be detected and many surfactants do not.

Although refractive index (RI) detection is a universal detection method, capable of detecting all analytes, it is incompatible with gradient methods, exhibits low sensitivity, and thus is only used when other detection methods are not applicable.

Evaporative light-scattering detection (ELSD) is not only a universal detection method, but also is compatible with gradient methods and is far more sensitive than RI. In addition, methods developed with ELSD can be easily transferred to Liquid Chromatography-Electrospray Ionization-MassSpectrometry (LC-ESI-MS) applications with little or no modifications, because both detectors share the same mobile phase requirements (Figures 1, 2, 8).

Suppressed conductivity detection can also be used for surfactant analysis and provides certain advantages for analyzing trace levels ionic surfactants in complex matrices. Figures 7 and 9 show the separation of various anionic and cationic surfactants on the Acclaim Surfactant column, using a borate buffer and acetic acid mobile phases, respectively.

#### **Broad range of applications**

#### Anionic surfactants

Anionic surfactants account for 60% of surfactant use in the United States, where they are popular ingredients in detergent powders. This popularity arises because of their effectiveness compared with other surfactants in particulate soil removal, especially from natural fabrics, and because they are easily spray-dried.

#### Linear alkylbenzenesulfonates

(LAS) are the most widely used surfactants, due to their low cost and rapid degradation under aerobic conditions. The synthesis of LAS typically leads to a mixture of positional isomers that results in a very complex sample matrix that can be a challenge to separate effectively by chromatography. To simplify quantitative analysis, isocratic conditions are often used to produce only single peaks for the same size homologues species. As shown in Figure 5, LAS can be separated on the Acclaim Surfactant column into simple, single peaks corresponding to a homologous series, whereas the Thermo Scientific<sup>™</sup> Acclaim<sup>™</sup> Polar Advantage (PA) column gives more complex chromatograms.

*Alkylether sulfates* are prepared by adding oxyethylene groups to an alcohol that is then sulfated. Oxyethylation enhances water solubility and foaming, making these surfactants ideal components in shampoos and detergents. Figure 6 shows the analysis of laureth sulfate using suppressed conductivity detection.



| Dimensions   | 4.6 × 150 mm                                                                                                     |
|--------------|------------------------------------------------------------------------------------------------------------------|
| Mobile phase | Acetonitrile/100 mM NH <sub>4</sub> OAc, pH 5.4,<br>v/v 70/30 for Acclaim Surfactant<br>v/v 50/50 for Acclaim PA |
| Temperature  | 30 °C                                                                                                            |
| Flow rate    | 1 mL/min                                                                                                         |
| lnj. volume  | 5 µL                                                                                                             |
| Detection    | UV, 225 nm                                                                                                       |
|              |                                                                                                                  |

Figure 5. Analysis of sodium dodecylbenzene sulfonate (LAS).



Figure 6. Analysis of ammonium laureth sulfate using conductivity detection.

#### **Cationic surfactants**

Cationic surfactants are used as fabric softeners, corrosion inhibitors, and antimicrobial agents. The most popular cationic surfactants include alkyl quaternary ammonium salts, benzylalkylammonium salts, pyridinium salts, ester quats, ethoxylated quats, and quaternary imidazolium compounds. As shown in Figure 7 and the linear response in Figure 8.



Figure 7. Separation of cationic surfactants using ELSD.



Figure 8. Calibration curve by UV detection.

#### Nonionic surfactants

Nonionic surfactants account for about 40% of the worldwide consumption of surfactants. Most nonionic surfactants are considered low-foaming products, have good cold water solubility, and low critical micelle concentration. Their compatibility with cationic fabric softeners makes them preferable in certain formulations. Figures 9–12 show chromatographic analyses of three individual nonionic surfactants using the Acclaim Surfactant column.



Figure 9. Separation of ethoxylated quats.



| Column       | Acclaim Surfactant, 5 µm                    |
|--------------|---------------------------------------------|
| Dimensions   | 4.6 × 150 mm                                |
| Mobile phase | A: Acetonitrile;<br>B: 0.1 M NH,OAc, pH 5.4 |
| Gradient     | 25–85% A in 30 min                          |
| Temperature  | 30 °C                                       |
| Flow rate    | 1 mL/min                                    |
| Inj. volume  | 10 µL                                       |
| Detection    | ELSD                                        |

Acclaim Surfactant, 5 µm

pH 5.4 v/v 40/60

30 °C 1 mL/min

25 µL ELSD

 $4.6 \times 150 \text{ mm}$ Acetonitrile/0.2 M NH<sub>4</sub>OAc,

Column

Dimensions

Mobile phase

Temperature

Flow rate

Inj. volume

Detection

Figure 10. Separation of quaternary imidazolinium compounds.



| Column       | Acclaim Surfactant, 5 µm             |
|--------------|--------------------------------------|
| Dimensions   | 4.6 × 150 mm                         |
| Nobile phase | A: Acetonitrile; B: H <sub>2</sub> O |
| Gradient     | 5–20% A in 25 min                    |
| Femperature  | 30 °C                                |
| low rate     | 1 mL/min                             |
| nj. volume   | 10 µL                                |
| Detection    | ELSD                                 |
|              |                                      |

Figure 11. Analysis of PEG monoethyl ether (MW-550).



Acclaim Surfactant, 5 µm Column Dimensions  $4.6 \times 150 \text{ mm}$ Mobile phase A: Acetonitrile; B: H<sub>2</sub>O 40-65% A in 30 min, Gradient then hold at 65% A for 5 min Temperature 30 °C Flow rate 1 mL/min Inj. volume 10 µL Detection ELSD



#### **Polyethylene Glycols**

Polyethylene glycols (PEGs) are often nonsurfactant impurities found in ethoxylated surfactants, typically in the range of 1–10%. The oligomer distribution is similar to, but broader than that of the surfactant. Figure 14 illustrates the exceptional resolution of the Acclaim Surfactant column for individual oligomers in various PEGs.



Figure 13. Analysis of ZONYL FSO fluorosurfactant.





### Analysis of surfactants in consumer products

Figures 15–21 demonstrate the applicability of the Acclaim Surfactant column for analyzing a variety of consumer products, such as shampoo, laundry detergent, dish washing liquid, mouthwash, and fabric softener.

#### **Reproducible manufacturing**

To meet the exacting needs of our customers, each Acclaim Surfactant column is manufactured to stringent specifications to ensure column-tocolumn reproducibility. Each column is shipped with a lot validation sheet showing the test results and specifications for the lot of bonded silica packed into the column. In addition, each column is individually tested and shipped with an individual test chromatogram validating the column performance, with respect to selectivity, capacity, and efficiency.



| Column       | Acclaim Surfactant, 5 µm                             |
|--------------|------------------------------------------------------|
| Dimensions   | 4.6 × 150 mm                                         |
| Mobile phase | A: Acetonitrile,<br>B: 0.1 M NH₄OAc, pH 5.4          |
| Gradient     | 25–80% A in 30 min,<br>then hold at 80% A for 15 min |
| Temperature  | 30 °C                                                |
| Flow rate    | 1 mL/min                                             |
| Inj. volume  | 10 µL                                                |
| Detection    | ELSD, UV                                             |





| Column       | Acclaim Surfactant, 5 µm                                                      |
|--------------|-------------------------------------------------------------------------------|
| Dimensions   | 4.6 × 150 mm                                                                  |
| Nobile phase | A: Acetonitrile,                                                              |
|              | B: 0.1 M NH <sub>4</sub> OAC, pH 5.4                                          |
| Gradient     | 25-80% A in 30 min,                                                           |
|              | then hold at 80% A for 15 min                                                 |
| Femperature  | 30 °C                                                                         |
| low rate     | 1 mL/min                                                                      |
| nj. volume   | 5 µL                                                                          |
| Detection    | ELSD, UV                                                                      |
| Sample prep  | Dilute 10× with 70% acetonitrile,<br>then filtered through 0.2 µm<br>membrane |
|              |                                                                               |

Figure 16. Analysis of a laundry washing detergent.



| olumn        | Acclaim Surfactant, 5 µm                                                      |
|--------------|-------------------------------------------------------------------------------|
| imensions    | 4.6 × 150 mm                                                                  |
| lobile phase | A: Acetonitrile,<br>B: 0.1 M NH₄OAc, pH 5.4                                   |
| radient      | 25–80% A in 30 min,<br>then hold at 80% A for 10 min                          |
| emperature   | 30 °C                                                                         |
| ow rate      | 1 mL/min                                                                      |
| j. volume    | 10 µL                                                                         |
| etection     | ELSD, UV                                                                      |
| ample prep   | Dilute 10× with 70% acetonitrile,<br>then filtered through 0.2 µm<br>membrane |
|              |                                                                               |





| -10          | 25                                                        | 5                                              | 70                                         |
|--------------|-----------------------------------------------------------|------------------------------------------------|--------------------------------------------|
| 0            | 25                                                        | 5                                              | 70                                         |
| 14           | 85                                                        | 5                                              | 10                                         |
| 16           | 85                                                        | 5                                              | 10                                         |
|              |                                                           |                                                |                                            |
| Column       | Acclaim Sur                                               | factant, 5 µ                                   | m                                          |
| Dimensions   | 4.6 × 150 m                                               | m                                              |                                            |
|              | A: 70% Acet                                               | onitrile in D                                  | ).l. water,                                |
| Mobile phase | B: 100 mM f<br>C: D.I. water                              | ormic acid,                                    |                                            |
| Temperature  | 30 °C                                                     |                                                |                                            |
| Flow rate    | 1 mL/min                                                  |                                                |                                            |
| Inj. volume  | 15 µL                                                     |                                                |                                            |
| Detection    | Suppressed<br>(CSRS ULTF<br>external wate<br>current 44 m | conductivit<br>A II 4 mm s<br>er mode at<br>A) | ty detection<br>suppressor,<br>1.0 mL/min, |
| Sample       | Scope (fivefo                                             | old dilution)                                  |                                            |
| Peaks        | 1. Cetylpyrid                                             | linium                                         |                                            |
|              |                                                           |                                                |                                            |
| Time (min)   | %A                                                        | %B                                             | %C                                         |
| -7           | 20                                                        | 15                                             | 65                                         |
| 0            | 20                                                        | 15                                             | 65                                         |
| 10           | 50                                                        | 15                                             | 35                                         |
| 20           | 50                                                        | 15                                             | 35                                         |

Acclaim Surfactant, 5 µm

ammonium acetate, pH 5.2, C:  $H_2O$  30 °C

%B

%C

10 μL UV at 220 nm and ELS detector

Scope (direct injection) 1. C16 – Pyridinium

4.6 imes 150 mmA: Acetonitrile, B: 100 mM

1 mL/min

2. Benzoate 3. Saccharinate

%A

| Figure ' | 18. Analysis | of a mouthwash. |  |
|----------|--------------|-----------------|--|



Column

Dimensions

Mobile phase

Temperature

Flow rate

Sample

Peaks

Inj. volume Detection

Time (min)

Figure 19. Analysis of a fabric softener.



| Column        | Acclaim Surfactant, 5 µm                      |
|---------------|-----------------------------------------------|
| Dimensions    | 4.6 × 150 mm                                  |
| Mabila phaga  | A: Acetonitrile; B: 100 mM                    |
| Nobile priase | ammonium acetate, pH 5.2, C: H <sub>2</sub> O |
| Temperature   | 30 °C                                         |
| Flow rate     | 1 mL/min                                      |
| Inj. volume   | 10 µL                                         |
| Detection     | UV at 220 nm and ELS detector                 |
| Sample        | Lysol disinfectant spray                      |
| Sample        | (direct injection)                            |
|               | 1. C <sub>12</sub> – Dimethyl benzyl ammonium |
| Peaks         | 2. C <sub>14</sub> – Dimethyl benzyl ammonium |
|               | 3. C <sub>16</sub> – Dimethyl benzyl ammonium |
|               | 4. Saccharinate                               |

| Column       | Acclaim Surfactant, 5 µm                                                                                                     |
|--------------|------------------------------------------------------------------------------------------------------------------------------|
| Dimensions   | 4.6 × 150 mm                                                                                                                 |
| Mobile phase | A: 70% Acetonitrile in D.I. water,<br>B: 100 mM formic acid, C: D.I. water                                                   |
| Temperature  | 30 °C                                                                                                                        |
| Flow rate    | 1 mL/min                                                                                                                     |
| lnj. volume  | 15 μL                                                                                                                        |
| Detection    | Suppressed conductivity detection<br>(CSRS ULTRA II 4 mm suppressor,<br>external water mode at 1.0 mL/min,<br>current 44 mA) |
| Sample       | Scope (fivefold dilution)                                                                                                    |
| Peaks        | 1. Cetylpyridinium                                                                                                           |

Figure 20. Determination of benzalkonium salts in spray disinfectant, comparing UV, ELSD and Suppressed conductivity.



| Column       | Acclaim Surfactant, 5 µm                                                    |
|--------------|-----------------------------------------------------------------------------|
| Dimensions   | 4.6 × 150 mm                                                                |
| Mobile phase | A: Acetonitrile, B: 100 mM<br>ammonium acetate, pH 5.2, C: H <sub>2</sub> 0 |
| Temperature  | 30 °C                                                                       |
| Flow rate    | 1 mL/min                                                                    |
| lnj. volume  | 10 µL                                                                       |
| Detection    | UV at 220 nm and ELS detector                                               |
| Sample       | Scope (direct injection)                                                    |
|              | 1. C <sub>16</sub> – Pyridinium                                             |
| Peaks        | 2. Benzoate                                                                 |
|              | 3. Saccharinate                                                             |

| Column          | Acclaim Surfactant, 5 µm                                                                                                     |
|-----------------|------------------------------------------------------------------------------------------------------------------------------|
| Dimensions      | 4.6 × 150 mm                                                                                                                 |
| Mobile phase    | A: 70% Acetonitrile in D.I. water,<br>B: 100 mM formic acid, C: D.I. water                                                   |
| Temperature     | 30 °C                                                                                                                        |
| Flow rate       | 1 mL/min                                                                                                                     |
| lnj. volume     | 15 μL                                                                                                                        |
| Detection       | Suppressed conductivity detection<br>(CSRS ULTRA II 4 mm suppressor,<br>external water mode at 1.0 mL/min,<br>current 44 mA) |
| Sample          | Scope (fivefold dilution)                                                                                                    |
| Peaks           | 1. Cetylpyridinium                                                                                                           |
| Sample<br>Peaks | external water mode at 1.0 mL/min,<br>current 44 mA)<br>Scope (fivefold dilution)<br>1. Cetylpyridinium                      |

Figure 21. Comparison of UV, ELS and Suppressed conductivity detection of mouthwash.

## thermo scientific

#### **Column specifications**

| Specifications                     |                  |
|------------------------------------|------------------|
| Starting material                  | Ultrapure silica |
| Particle size                      | 5 µm             |
| Particle shape                     | Spherical        |
| Particle size distribution (40/90) | 1.2              |
| Total carbon content (%)           | 12%              |
| Endcapped                          | Yes              |
| Metal impurity (ppm) Na, Fe, Al    | < 10.0           |
| Pore volume (mL/g)                 | 0.9              |
| Average pore diameter (Å)          | 120              |

#### **Ordering information**

| Column             | Format     | Length (mm) | ID (mm) | Part number |
|--------------------|------------|-------------|---------|-------------|
| Acclaim Surfactant | Analytical | 150         | 2.1     | 068123      |
|                    |            | 150         | 4.6     | 063201      |
|                    |            | 250         | 4.6     | 063203      |
|                    | Guard -    | 10          | 2.1     | 069693      |
|                    |            | 10          | 4.6     | 069701      |

#### Acclaim Guard Holder ordering information

| Guard holder                                                                           | Part number |
|----------------------------------------------------------------------------------------|-------------|
| Thermo Scientific <sup>™</sup> Acclaim <sup>™</sup> Guard Cartridge Holder V-2         | 069580      |
| Thermo Scientific <sup>™</sup> Acclaim <sup>™</sup> Guard Kit (Holder and coupler) V-2 | 069707      |
| Guard to Analytical Column Coupler V-2                                                 | 074188      |

#### Expect reproducible results with sample prep, columns and vials



Don't see what you need? We would be happy to discuss your specific requirements. Please contact your local sales representative for custom orders.

### Find out more at thermofisher.com/acclaim



© 2020 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. This information is presented as an example of the capabilities of Thermo Fisher Scientific Inc. products. It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all locations. Please consult your local sales representative for details. **PS22088-EN 0720**