High precision tungsten isotopes analyzed via thermal ionization mass spectrometry

Authors

Andrea Mundl-Petermeier¹, Jenny Roberts², Hauke Vollstaedt²

¹University of Vienna, Austria

²Thermo Fisher Scientific, Bremen, Germany

Keywords Tungsten isotopes, TIMS

Goal

To demonstrate the high precision achievable for tungsten isotope measurements using the negative mode of the Thermo Scientific[™] Triton[™] XT thermal ionization mass spectrometer.

Introduction

The short-lived ¹⁸²Hf-¹⁸²W isotopic system [¹⁸²Hf \rightarrow ¹⁸²W + 2 β ⁻, half-life (t½) = 8.9 million years]¹ is a powerful tool for studying planetary differentiation processes that occurred within the first 60 million years of solar system history. Given that tungsten (W) is moderately siderophile and hafnium (Hf) is strongly lithophile, the system is particularly sensitive to metal-silicate segregation. The most widely used application for this system has been dating core formation of planetary bodies.²⁻⁴ By measuring W isotopic compositions of iron meteorites, ages can be calculated, assuming chondritic Hf/W. The ¹⁸²Hf-¹⁸²W isotopic system has also been used for terrestrial applications. ¹⁸²W/¹⁸⁴W is used for measuring ¹⁸²W ingrowth from lithophile Hf. For example, the W isotopic compositions of mantle-derived rocks have been used to investigate mantle evolution.⁵⁻⁸ Isotopic variations in ¹⁸²W/¹⁸⁴W can be smaller than 10 ppm,^{6,9} requiring high precision W isotope measurements.

Here we demonstrate the capabilities of the Thermo Scientific Triton XT thermal ionization mass spectrometer equipped with $10^{13} \Omega$ Amplifier Technology to measure W isotopes at high precision of better than 2 ppm (2 RSD) for 0.3–1.25 µg W loadings.

thermo scientific

Experimental

Sample preparation

Single Re filaments (99.99% purity) were used in these measurements. Filaments were outgassed at 4.5 A for at least 48 hours prior to loading, ideally several weeks.

Filament loading procedures generally followed Archer at al.¹⁰ Specifically, W was loaded in HCl matrix on the filament followed by a brief heating of the filament to a dull glow. To enhance ionization, 1 μ L of activator solution containing 20 μ g of La and 5 μ g of Gd in 1 M Teflon double-distilled HCl was then added in 2–3 aliquots to the standard.

Instrumentation

Analyses were performed at the University of Vienna on a Triton XT system in negative ion mode. A combination of 10¹¹ and 10¹³ Ω amplifiers were used during analysis (Table 1). Specifically, the low noise 10¹³ Ω amplifiers were used to measure the small ion beams of ¹⁸⁰W¹⁶O₃, ¹⁸¹Ta¹⁶O₃, ¹⁸⁶W¹⁶O₂¹⁸O, ¹⁸⁷Re¹⁶O₂¹⁸O, and ¹⁹⁰Os¹⁶O₃ during the multi-static method.

A total of 18 blocks were measured with 20 cycles per block for a total measurement time of ~11 hours. The six $10^{11} \Omega$ amplifiers were rotated after every block (a total of three full amplifier rotations across the run). Peak centering was performed

every 6th block, a lens focusing every 2nd block and a 6 minute baseline was performed every block. High-precision 160 min amplifier gains were determined before every other sample run; however, in the data reduction, an average of the last three gain measurements was used to correct each 10¹¹ Ω amplifier.

Oxide production was enhanced using a VarianTM leak valve to bleed oxygen ($P_{source} = 1.2 \times 10^{-7}$ mbar) into the source⁹.

Data reduction

Data reduction procedures follow a three-step iterative process¹⁰ including interference correction of Re and Ta isotopologues and oxygen corrections. Potential Os interferences were also monitored via the measurement of ¹⁹⁰Os¹⁶O₃ using 10¹³ Ω amplifiers on H4 in line 2 (Table 1). All ratios were corrected for instrumental mass fractionation using a ¹⁸⁶W/¹⁸³W ratio of 1.9859. A two-sigma outlier rejection was made based on cycles.

Results and discussion

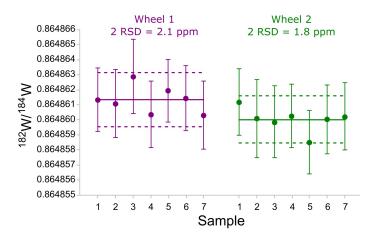

The internal precision of the individual measurements is between 2.1 ppm and 2.6 ppm (2 RSE) and close to the limit of counting statistics (Table 2). The results of two independent analytical sessions have ¹⁸²W/¹⁸⁴W external precisions of 2.1 and 1.8 ppm (2 RSD; n = 7 for each session; Table 2; Figure 1).

Table 1. Cup configuration for W isotope measurements

10¹³ Ω	10 ¹¹ Ω	10 ¹¹ Ω	10 ¹¹ Ω	10 ¹¹ Ω	10 ¹¹ Ω	10 ¹¹ Ω	10¹³ Ω	10¹³ Ω	Integration time	Idle time
L4	L3	L2	L1	CC	H1	H2	H3	H4	[s]	[s]
¹⁸⁰ W ¹⁶ O ₃	¹⁸¹ Ta ¹⁶ O ₃	¹⁸² W ¹⁶ O ₃	$^{183}W^{16}O_3$	$^{184}W^{16}O_3$	185Re16O3	¹⁸⁶ W ¹⁶ O ₃	¹⁸⁶ W ¹⁶ O ₂ ¹⁸ O	187Re16O218O	33.554	10
¹⁸¹ Ta ¹⁶ O ₃	$^{182}W^{16}O_3$	$^{183}W^{16}O_{3}$	$^{184}W^{16}O_3$	¹⁸⁵ Re ¹⁶ O ₃	$^{186}W^{16}O_{3}$	¹⁸⁷ Re ¹⁶ O ₃	187Re16O218O	¹⁹⁰ Os ¹⁶ O ₃	33.554	10

Table 2. ¹⁸²W/¹⁸⁴W ratios for 14 analyses from two analytical sessions of a 0.3-1.25 µg Alfa Aesar™ W standard

Wheel	Sample	Average ¹⁸⁴ W signal [V]	¹⁸² W/ ¹⁸⁴ W multi static	2σ	2 RSE (ppm)	Theoretical limit of precision 2 RSE (ppm)
1	1	1.4	0.864861	2.10E-06	2.4	2.0
1	2	1.2	0.864861	2.27E-06	2.6	2.2
1	3	1.3	0.864863	2.47E-06	2.9	2.1
1	4	1.3	0.864860	2.23E-06	2.6	2.1
1	5	1.1	0.864862	2.07E-06	2.4	2.3
1	6	1.2	0.864861	2.14E-06	2.5	2.2
1	7	1.1	0.864860	2.25E-06	2.6	2.2
		Average	0.864861	1.78E-06	2.1	
2	1	1.2	0.864861	2.19E-06	2.5	2.2
2	2	1.1	0.864860	2.60E-06	3.0	2.2
2	3	1.2	0.864860	2.37E-06	2.7	2.2
2	4	1.2	0.864860	2.11E-06	2.4	2.2
2	5	1.2	0.864858	2.11E-06	2.4	2.2
2	6	1.2	0.864860	2.27E-06	2.6	2.2
2	7	1.1	0.864860	2.23E-06	2.6	2.3
		Average	0.864860	1.59E-06	1.8	

Figure 1.¹⁸²W/¹⁸⁴W ratios for 14 analyses from two analytical sessions of a 0.3-1.25 µg Alfa Aesar W standard. Mean ¹⁸²W/¹⁸⁴W and 2 SD for each session shown by solid and dashed lines. Error bars represent 2 SE internal precisions.

Based on the average signal intensity of each filament (given a measurement time of 402 min = 2 lines x 33.554 s * 18 blocks * 20 cycles), the theoretical limit on internal precision of the measurement can be determined:

$$2\text{RSE (ppm)} = \sqrt{\left(\sqrt{\text{Tot.counts}_{184}\text{W}}\right)^2 + \left(\sqrt{\text{Tot.counts}_{182}\text{W}}\right)^2}$$

Table 2 shows that the measurements made on the 14 W samples were within 40–50% of the theoretical limit of internal precision based on counting statistics. This demonstrates that the precision of the method is not limited by the instrument noise but rather by signal intensity and total measurement time.

Conclusion

The Triton XT TIMS system equipped with 10¹³ Ω Amplifier Technology is capable of analyzing ¹⁸²W/¹⁸⁴W isotope ratios at precisions of \leq 2 ppm for 0.3–1.25 µg W loadings. This allows small W isotopic variations to be identified, opening up new possibilities for exploring small-scale heterogeneities resulting from early planetary differentiation processes. These isotopic differences can help in constraining the timing of mantle homogenization in Early Earth or tracing core-mantle interactions, ultimately giving a better understanding of geodynamic processes and composition of mantle reservoirs.

Acknowledgments

A M-P acknowledges support from FWF grant V659-N29.

References

- Vockenhuber, C. et al. New half-life measurement of 182Hf: improved chronometer for the early solar system. Phys Rev Lett 2004, 93, 172501.
- Kruijer, T. S. et al. Protracted core formation and rapid accretion of protoplanets. Science 2014, 344, 1150–1154.
- Harper, C. L. & Jacobsen, S. B. Evidence for 182Hf in the early Solar System and constraints on the timescale of terrestrial accretion and core formation. Geochimica et Cosmochimica Acta 1996, 60, 1131–1153.
- Lee, D. C. & Halliday, A. N. Hafnium–tungsten chronometry and the timing of terrestrial core formation. Nature 1995, 378, 771–774.
- Mundl-Petermeier, A. et al. Anomalous 182W in high 3He/4He ocean island basalts: Fingerprints of Earth's core? Geochimica et Cosmochimica Acta 2020, 271, 194–211.
- Mundl, A. et al. Tungsten-182 heterogeneity in modern ocean island basalts. Science 2017, 356, 66–69.
- Willbold, M.; Mojzsis, S. J.; Chen, H. W. & Elliott, T. Tungsten isotope composition of the Acasta Gneiss Complex. Earth and Planetary Science Letters 2015, 419, 168–177.
- Willbold, M.; Elliott, T. & Moorbath, S. The tungsten isotopic composition of the Earth's mantle before the terminal bombardment. Nature 2011 477, 195–198.
- Mundl-Petermeier, A.; Viehmann, S.; Tusch, J.; Bau, M. & Münker, C. Earth's geodynamic evolution constrained by 182W in Archean seawater. Nature Communications, in press, 2022, doi: 10.1038/s41467-022-30423-3.
- Archer, G. J.; Mundl, A.; Walker, R. J.; Worsham, E. A. & Bermingham, K. R. High-precision analysis of 182W/184W and 183W/184W by negative thermal ionization mass spectrometry: Per-integration oxide corrections using measured 180/160. Int J Mass Spectrom 2017, 414, 80–86.

Learn more at thermofisher.com/tims

For Research Use Only. Not for use in diagnostic procedures. © 2022 Thermo Fisher Scientific Inc. Varian is a trademark of Varian Medical Systems, Inc. All other trademarks are the property of Thermo Fisher Scientific Inc. and its subsidiaries unless otherwise specified. This information is presented as an example of the capabilities of Thermo Fisher Scientific Inc. products. It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details. AN000969 0522

thermo scientific