NOTA DE APLICAÇÃO 000136

Um método GC-FID rápido e econômico para a determinação de gordura do leite adulterada

Autores: Giulia Riccardino, Maria Mazzucotelli e Daniela Cavagnino

Thermo Fisher Scientific, Milão, Itália Subodh K. Budakoti

Thermo Scientific, Customer Solution Center, Ghaziabad, Índia

Palavras-chave: Gordura do leite, adulteração, triglicerídeos, colesterol, cromatografia gasosa, GC, detector de ionização de chama, FID

Objetivo

O objetivo desta nota de aplicação é demonstrar o desempenho do GC Thermo Scientific™ TRACE™ série 1600 acoplado à detecção de ionização de chama para a avaliação da autenticidade da gordura do leite de acordo com o método da Norma Internacional ISO 17678:2019 [IDF 202:2019].

Introdução

A gordura é um componente importante do leite e produtos lácteos. Devido ao seu alto custo, óleos vegetais de preço inferior ou outras gorduras animais mais baratas às vezes são usados no processo de fabricação. Portanto, testar a gordura do leite é essencial para garantir que os produtos lácteos sejam vendidos conforme anunciado e produzidos com um padrão consistentemente alto.

A International Organization for Standardization (ISO) e a International Dairy Federation (IDF) publicaram um método de referência para a determinação da pureza da gordura do leite (ISO 17678:2010 [IDF 202:2010]) ² com base

na impressão digital de triglicerídeos na gordura do leite. Este método foi revisado em 2019 (ISO 17678:2019 [IDF 202:2019]).3 Com o objetivo de apoiar os laboratórios de testes analíticos que examinam amostras de gordura do leite, a IDF publicou recentemente diretrizes adicionais⁴ para garantir testes precisos de leite e produtos lácteos. A integridade da gordura do leite pode ser determinada ao comparar o perfil de triglicerídeos das amostras com o perfil de triglicerídeos da gordura do leite pura, aplicando um conjunto de equações matemáticas. O método é adequado para a detecção de gorduras vegetais e animais, como sebo bovino e banha.

Neste estudo, a cromatografia gasosa (GC) acoplada à detecção de ionização de chama (FID) foi usada para avaliar o teor de glicerídeos em manteiga clarificada disponível comercialmente. O uso de um injetor de vaporização de temperatura programável (PTV) no modo de coluna a frio (COC) permitiu a transferência direta de analitos

para a coluna analítica em baixa temperatura, minimizando assim a discriminação da amostra que pode ocorrer durante uma injeção a quente. Os triglicerídeos de interesse (C24-C56) foram separados por número de carbonos usando uma coluna capilar de metal curta, e suas frações de massa foram usadas para calcular os valores-S visando estabelecer se a presença de uma gordura estranha poderia ser detectada na amostra de manteiga analisada.¹

Experimental

Em todos os experimentos, foi usado um GC TRACE 1610 equipado com um injetor de vaporização de temperatura programável Thermo Scientific™ Instant Connect (PTV iConnect), usado no modo on-column, e um detector de ionização de chama Thermo Scientific™ Instant Connect (FID iConnect), equipado com um jet de diâmetro largo (P/N 40402205), acoplado a um amostrador automático de líquidos Thermo Scientific™ AS série 1610. A separação cromatográfica foi obtida em uma coluna capilar Thermo Scientific™ TraceGOLD™ TG-1MT, 6 m × 0,53 mm × 0,15 μm (P/N 26M99-4100). O baixo sangramento da coluna metálica TraceGOLD combinada com sua alta temperatura de operação (até 400/430 °C) garantiu o cumprimento dos requisitos cromatográficos do método para a análise de triglicerídeos (TGs) e colesterol. Para esta aplicação, o Nitrogênio representa uma alternativa viável ao Hélio como gás de arraste, pois pode ser facilmente produzido em laboratório com alta pureza usando um gerador de Nitrogênio, tornando-o muito econômico. Parâmetros adicionais de GC-FID e amostrador automático são detalhados na Tabela 1.

Tabela 1. Parâmetros experimentais de GC-FID e amostrador automático usados para a avaliação da impressão digital de triglicerídeos

Parâmetros do amostrador automático AI/AS 1610						
Tipo de injeção	Padrão					
Modo de amostra	Viscosidade					
Cursos de preenchimento	10					
Profundidade da amostra	Fundo					
Modo de injeção	Customizado					
Velocidade de injeção (µL/s)	100					
Tempo de atraso pré-injeção (min)	0					
Tempo de atraso pós-injeção (s)	3					
Ciclos de lavagem pré-injeção	3					
Ciclos de lavagem pós-injeção	5					
Ciclos de lavagem de amostra	3					
Volume de Injeção (µL)	0,5					
Seringa	5 μL, 50 mm, Ga 26* (P/N 36500505)					

^{*} O modo de injeção OC requer o uso de uma seringa de agulha 26Ga

Parâmetros do iConnect PTV						
Temperatura de injeção (°C)	80					
Revestimento	Revestimento PTV Silcosteel Simile OC (P/N 45322052)					
Módulo e modo de entrada	PTV, simulado na coluna					
Tempo de injeção (min)	0,05					
Taxa de transferência (°C/s)	0,7					
Temperatura de transferência (°C)	380					
Tempo de transferência (min)	0,15					
Temperatura pós-ciclo	Manter					
Fluxo da divisão (mL/min)	10					
Fluxo de purga do septo (mL/min)	1, constante					
Gás de arraste, fluxo (mL/min)	N _{2,} 5					

Parâmetros do GC TRACE 1610						
Programa da temperatura do forno						
Temperatura (°C)	80					
Tempo de espera (min)	0,5					
Taxa (°C/min)	50					
Temperatura 2 (°C)	190					
Taxa (°C/min)	6					
Temperatura 3 (°C)	370					
Tempo de espera (min)	5					
Tempo de processamento de GC (min.)	37,70					
FID						
Temperatura (°C)	370					
Fluxo de ar (mL/min)	350					
Fluxo H ₂ flow (mL/min)	35					
Fluxo N ₂ flow (mL/min)	40					
Taxa de aquisição (Hz)	25					
Coluna						
TraceGOLD TG-1MT	6 m, 0,53 mm, 0,15 μm (P/N 26M99-4100)					

Preparo de padrões e amostras

Pequenas alíquotas de dois materiais de referência certificados (CRM), BCR-632A e BCR-632B, foram fornecidas por um dos laboratórios internos da Thermo Scientific devido à sua indisponibilidade atual no mercado local. De acordo com a especificação do fabricante, o material de referência deve ser injetado no dia da abertura e as ampolas abertas não devem ser armazenadas para testes posteriores. ⁶ O CRM de manteiga pura (BCR-632A) foi diluído a 1% com heptano (Fisher Scientific, >99%, P/N 10692752), injetado em triplicata no início da sequência e usado para derivar o fator de resposta de cada triglicérides e colesterol de acordo com o método ISO/IDF. Embora não solicitado como parte

da validação do método, uma gordura de manteiga CRM adulterada com óleo de coco (BCR-632B)⁶ foi diluída a 1% com heptano e injetada (n=5) para verificar a adequação do método para detecção de adulteração de gordura estranha.

Preparo de amostras

A manteiga clarificada comercialmente disponível foi comprada de um varejista local. A amostra foi fundida a 50 °C e depois diluída a 1% com heptano. Uma alíquota (1 mL) foi então transferida para o frasco de GC para injeção. Essa amostra foi usada para verificar a consistência da resposta e avaliar a precisão do método (n=9).

Aquisição, processamento e geração de relatórios de dados

Os dados foram adquiridos usando o software Sistema de dados de cromatografia (CDS) Thermo Scientific™ Chromeleon™, versão 7.3. Essa plataforma única integra controle de instrumentos, funcionalidade de desenvolvimento de métodos, fluxos de trabalho focados em quantificação, relatórios e armazenamento em conformidade com o Título 21 CFR parte 11, garantindo gerenciamento de dados eficaz, facilidade de uso, integridade de dados e rastreabilidade. ⁵ O Chromeleon CDS também oferece a opção de escalar todo o gerenciamento de dados de uma única estação de trabalho para um ambiente corporativo.

Resultados e discussão

Perfil cromatográfico de triglicerídeos e colesterol em amostra de manteiga clarificada

A integração de vários picos cromatográficos FID foi realizada de acordo com o método ISO/IDF, aplicando uma integração

de linha de base de C24 a C56 e combinando triglicerídeos com números ímpares de acil-C com o número par anterior. Um exemplo de uma impressão digital típica de triglicerídeos obtida para uma amostra de manteiga clarificada com integração de linha de base é relatado na Figura 1.

Cálculo de fatores de resposta para amostras

Conforme especificado no método ISO, CRM (BCR-632A) foi injetado em triplicata no início da sequência e usado para calcular os fatores de resposta (fi) para TGs e colesterol. As frações de massa (%) obtidas foram consistentes com os valores certificados esperados com desvios não superiores a 0,56%. O C56 não foi incluído nos cálculos devido ao seu baixo teor de acordo com o método ISO. Os fatores de resposta foram derivados da última injeção de CRM de gordura de manteiga pura, aplicando a Equação 1. As frações de massa medidas e esperadas (%) bem como o desvio dos valores esperados e fi calculado são relatados na Tabela 2.

Onde:

Wi = fração de massa (%) de cada TG ou colesterol no material de referência certificado

Ai = área de pico absoluto de cada TG ou colesterol no material de referência certificado

Os fatores de resposta calculados foram <1,25 para todos os triglicerídeos e colesterol, portanto, adequados para serem aplicados para calcular as frações de massa de TGs e colesterol na amostra analisada.

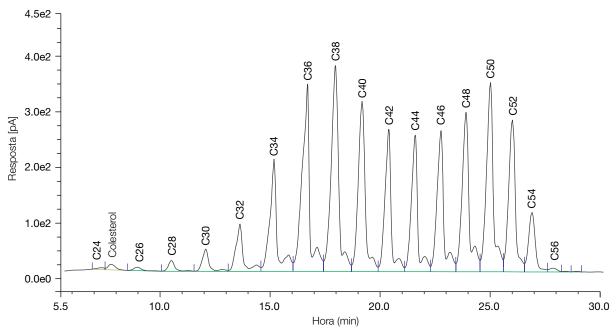


Figura 1. Integração de linha de base de TGs e colesterol na amostra de manteiga clarificada de acordo com o método ISO 17678:2019

Tabela 2. Frações de massa (%) obtidas para um padrão de manteiga pura dentro de 0,005–0,56% dos valores certificados, com fi calculado < 1,25 para triglicerídeos e colesterol. Os fatores de resposta são expressos com quatro dígitos após o ponto decimal, conforme a exigência do método.

Triglicerídeos	RT (min)	BCR-632 Uma fração de massa média (%, n=3)		Desvio do valor esperado	Fator de resposta determinado	
		Medido	Esperado	(%)	(fi)	
C24	7,20	0,05	0,07	0,02	1,0541	
Colesterol	7,64	0,284	0,289	0,005	0,9999	
C26	8,81	0,26	0,33	0,07	0,9936	
C28	10,37	0,64	0,74	0,10	0,9995	
C30	11,95	1,26	1,37	0,11	1,0036	
C32	13,50	2,79	2,83	0,04	0,9996	
C34	15,06	6,24	6,09	0,15	0,9999	
C36	16,57	11,11	10,70	0,41	0,9995	
C38	17,85	13,06	12,50	0,56	1,0003	
C40	19,03	10,44	10,05	0,39	0,9998	
C42	20,27	7,25	7,07	0,18	1,0003	
C44	21,46	6,62	6,68	0,06	1,0003	
C46	22,64	7,11	7,36	0,25	0,9995	
C48	23,78	8,46	8,74	0,28	0,9999	
C50	24,88	10,29	10,74	0,45	1,0002	
C52	25,89	9,35	9,80	0,45	0,9994	
C54	26,77	4,43	4,70	0,27	1,0008	

Composição de triglicerídeos em amostras

A amostra de manteiga clarificada foi preparada conforme detalhado na seção de preparo de amostra. A amostra foi injetada várias vezes (n=9) para avaliar a consistência dos resultados e a precisão. Além disso, uma gordura de manteiga adulterada (BCR-632B) foi corrida (n=5) para verificar a adequação do método para detecção de adulteração. A fração de massa de cada TG e colesterol foi calculada aplicando a Equação 2.

Equação 2
$$wi = [Ai * fi / \sum (Ai * fi)] * 100$$

Onde:

Ai = área de pico absoluta de cada TG na amostra de teste fi = fator de resposta de cada TG determinado usando o CRM BCR-632A

A integridade da gordura do leite foi determinada usando equações de triglicerídeos definidas (valores-S, Apêndice 1) com base nas frações de massa de moléculas de gordura variando de C24 a C54 usando apenas números C pares, e os resultados foram comparados com os limites de valores-S fornecidos no método ISO/IDF.

O uso de fórmulas de conteúdo de triglicerídeos definidas com base na soma ponderada normalizada de picos de triglicerídeos individuais permitiu a fácil comparação de impressões digitais de triglicerídeos em amostras puras e adulteradas. Os valores-S calculados para a amostra de manteiga clarificada ficaram dentro dos limites-S, portanto, pode ser considerada uma amostra de gordura de leite pura. Ao contrário, na amostra de gordura adulterada o valor-S relacionado à gordura de coco e palmiste falhou. A amostra pode ser considerada como contendo gordura estranha, confirmando assim a adequação do método na detecção de possíveis fraudes, conforme relatado na Figura 2.

Os resultados obtidos para ambas as amostras de teste foram consistentes nas injeções replicadas com %RSD < 0,3 (Apêndice 1). %RSDs de área de pico absoluto foram avaliados na amostra de manteiga clarificada em n=9 réplicas, obtendo uma média de 1,1% conforme relatado na Figura 3. Além disso, as opções de relatório personalizáveis do Chromeleon CDS garantiram uma rápida revisão de dados e fácil interpretação para possível adulteração de gordura, conforme relatado na Figura 4.

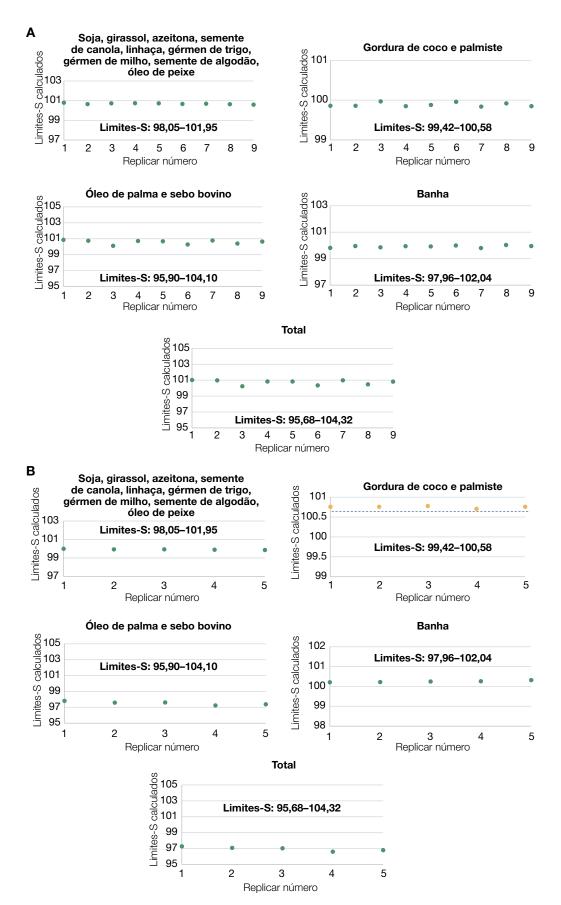


Figura 2. Valores-S calculados para injeções replicadas de amostras de manteiga clarificada (n=9) (A) e gordura de manteiga adulterada (n=5) (B). Os valores-S para a amostra de manteiga clarificada ficaram dentro dos limites-S, portanto, pode ser considerada uma amostra de gordura de leite pura. Pelo contrário, o valor-S relacionado à gordura de coco e palmiste falhou na amostra de gordura adulterada. Os limites-S são anotados (consulte o Apêndice 2 para os valores-S calculados de cada injeção).

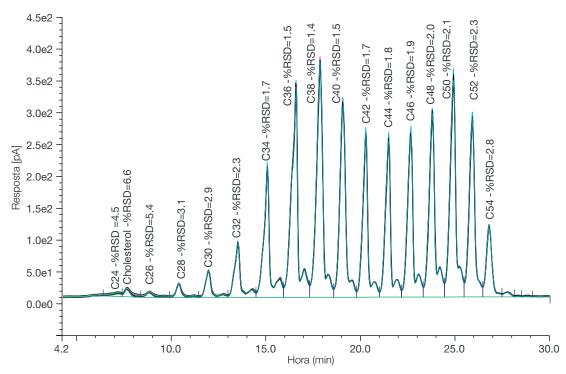


Figura 3. Cromatogramas sobrepostos de amostra de manteiga clarificada (n=9) com %RSDs de área de pico absoluta calculados a partir de n=9 injeções repetidas (anotadas)

No.	Peak Name	Area	Height	Relative Area	Soybean	Coconut	Palm	Lard	Total
		pA*min	pΑ	%					
1	C24	0.616	2.107	0.05					
2	Cholesterol	3.010	8.750	0.25					
3	C26	2.598	6.649	0.21				1.74	-0.74
4	C28	6.984	21.483	0.58			2.49		4.35
5	C30	14.955	42.765	1.24	3.00		7.49		7.94
6	C32	33.792	88.840	2.80		12.73	-42.53	4.10	-52.1
7	C34	78.146	212.500	6.47	5.05		30.70	12.02	43.40
8	C36	138.110	341.074	11.43	8.09	13.00	-2.35	20.50	
9	C38	149.935	374.412	12.41	8.36	17.95	16.83		
10	C40	115.712	312.612	9.57	38.58		69.47		82.5
11	C42	87.823	266.447	7.27	-9.36	15.60	-30.93	16.16	-36.4
12	C44	86.339	259.312	7.14	8.95	2.82			4.20
13	C46	95.973	268.741	7.94	12.04	4.11	45.13	19.83	42.6
14	C48	113.941	296.931	9.43		10.75			
15	C50	131.869	358.448	10.91	24.92	10.16			
16	C52	103.834	290.536	8.59		8.64		22.09	
17	C54	41.052	113.403	3.40		4.99		3.98	
Total:		1204.688	3265.008	99.68	99.65	100.76	96.30	100.42	95.7
					Passed	Passed	Passed	Passed	Pass
No.	Peak Name	Area	Height	Relative Area	Soybean	Coconut	Palm	Lard	Tota
		pA*min	pÅ	%	,				
1	C24	0.751	2.513	0.06					
_			9.085	0.00					
2	Cholesterol	3.252	9.000	0.28					
2 3	Cholesterol C26			0.28				1.74	-0.7
3		3.252 3.165 7.994	8.115 23.682				2.49	1.74	
3 4	C26 C28	3.165 7.994	8.115 23.682	0.27 0.68	3.00			1.74	4.35
3 4 5	C26 C28 C30	3.165 7.994 16.776	8.115 23.682 44.866	0.27 0.68 1.42	3.00	12.73	7.49		4.35 7.94
3 4 5 6	C26 C28 C30 C32	3.165 7.994 16.776 39.995	8.115 23.682 44.866 93.847	0.27 0.68 1.42 3.39		12.73	7.49 -42.53	4.10	4.35 7.94 -52.1
3 4 5 6 7	C26 C28 C30 C32 C34	3.165 7.994 16.776 39.995 81.535	8.115 23.682 44.866 93.847 199.834	0.27 0.68 1.42 3.39 6.91	5.05		7.49 -42.53 30.70	4.10 12.02	4.35 7.94 -52.1
3 4 5 6 7 8	C26 C28 C30 C32 C34 C36	3.165 7.994 16.776 39.995 81.535 137.387	8.115 23.682 44.866 93.847 199.834 306.076	0.27 0.68 1.42 3.39 6.91 11.65	5.05 8.09	13.00	7.49 -42.53 30.70 -2.35	4.10	4.35 7.94 -52.1
3 4 5 6 7 8 9	C26 C28 C30 C32 C34 C36 C38	3.165 7.994 16.776 39.995 81.535 137.387 154.628	8.115 23.682 44.866 93.847 199.834 306.076 365.900	0.27 0.68 1.42 3.39 6.91 11.65 13.11	5.05 8.09 8.36		7.49 -42.53 30.70	4.10 12.02	4.35 7.94 -52.1 43.4
3 4 5 6 7 8	C26 C28 C30 C32 C34 C36	3.165 7.994 16.776 39.995 81.535 137.387	8.115 23.682 44.866 93.847 199.834 306.076	0.27 0.68 1.42 3.39 6.91 11.65 13.11 10.27	5.05 8.09 8.36 38.58	13.00 17.95	7.49 -42.53 30.70 -2.35 16.83 69.47	4.10 12.02 20.50	4.35 7.94 -52.1 43.4
3 4 5 6 7 8 9 10	C26 C28 C30 C32 C34 C36 C38 C40	3.165 7.994 16.776 39.995 81.535 137.387 154.628 121.159 85.106	8.115 23.682 44.866 93.847 199.834 306.076 365.900 313.349 255.749	0.27 0.68 1.42 3.39 6.91 11.65 13.11 10.27 7.22	5.05 8.09 8.36 38.58 -9.36	13.00 17.95 15.60	7.49 -42.53 30.70 -2.35 16.83	4.10 12.02	4.35 7.94 -52.1 43.4 82.5 -36.4
3 4 5 6 7 8 9 10 11	C26 C28 C30 C32 C34 C36 C38 C40 C42	3.165 7.994 16.776 39.995 81.535 137.387 154.628 121.159 85.106 77.706	8.115 23.682 44.866 93.847 199.834 306.076 365.900 313.349 255.749 224.163	0.27 0.68 1.42 3.39 6.91 11.65 13.11 10.27 7.22 6.59	5.05 8.09 8.36 38.58 -9.36 8.95	13.00 17.95 15.60 2.82	7.49 -42.53 30.70 -2.35 16.83 69.47 -30.93	4.10 12.02 20.50 16.16	4.35 7.94 -52.1 43.4 82.5 -36.4 4.20
3 4 5 6 7 8 9 10 11 12	C26 C28 C30 C32 C34 C36 C38 C40 C42 C44	3.165 7.994 16.776 39.995 81.535 137.387 154.628 121.159 85.106 77.706 83.290	8.115 23.682 44.866 93.847 199.834 306.076 365.900 313.349 255.749 224.163 229.642	0.27 0.68 1.42 3.39 6.91 11.65 13.11 10.27 7.22 6.59 7.06	5.05 8.09 8.36 38.58 -9.36	13.00 17.95 15.60 2.82 4.11	7.49 -42.53 30.70 -2.35 16.83 69.47	4.10 12.02 20.50	4.35 7.94 -52.1 43.4 82.5 -36.4 4.20
3 4 5 6 7 8 9 10 11 12 13	C26 C28 C30 C32 C34 C36 C38 C40 C42 C44	3.165 7.994 16.776 39.995 81.535 137.387 154.628 121.159 85.106 77.706 83.290 97.794	8.115 23.682 44.866 93.847 199.834 306.076 365.900 313.349 255.749 224.163 229.642 252.572	0.27 0.68 1.42 3.39 6.91 11.65 13.11 10.27 7.22 6.59 7.06 8.29	5.05 8.09 8.36 38.58 -9.36 8.95 12.04	13.00 17.95 15.60 2.82 4.11 10.75	7.49 -42.53 30.70 -2.35 16.83 69.47 -30.93	4.10 12.02 20.50 16.16	4.35 7.94 -52.1 43.4 82.5 -36.4 4.20
3 4 5 6 7 8 9 10 11 12 13 14	C26 C28 C30 C32 C34 C36 C38 C40 C42 C44 C46 C48 C50	3.165 7.994 16.776 39.995 81.535 137.387 154.628 121.159 85.106 77.706 83.290 97.794 115.869	8.115 23.682 44.866 93.847 199.834 306.076 365.900 313.349 255.749 224.163 229.642 252.572 299.323	0.27 0.68 1.42 3.39 6.91 11.65 13.11 10.27 7.22 6.59 7.06 8.29 9.82	5.05 8.09 8.36 38.58 -9.36 8.95	13.00 17.95 15.60 2.82 4.11 10.75 10.16	7.49 -42.53 30.70 -2.35 16.83 69.47 -30.93	4.10 12.02 20.50 16.16 19.83	4.35 7.94 -52.1 43.4 82.5 -36.4 4.20
3 4 5 6 7 8 9 10 11 12 13 14 15 16	C26 C28 C30 C32 C34 C36 C38 C40 C42 C44 C46 C48 C50 C52	3.165 7.994 16.776 39.995 81.535 137.387 154.628 121.159 85.106 77.706 83.290 97.794 115.869 102.173	8.115 23.682 44.866 93.847 199.834 306.076 365.900 313.349 255.749 224.163 229.642 252.572 299.323 277.878	0.27 0.68 1.42 3.39 6.91 11.65 13.11 10.27 7.22 6.59 7.06 8.29 9.82 8.66	5.05 8.09 8.36 38.58 -9.36 8.95 12.04	13.00 17.95 15.60 2.82 4.11 10.75 10.16 8.64	7.49 -42.53 30.70 -2.35 16.83 69.47 -30.93	4.10 12.02 20.50 16.16 19.83	4.35 7.94 -52.1 43.4 82.5 -36.4 4.20
3 4 5 6 7 8 9 10 11 12 13 14	C26 C28 C30 C32 C34 C36 C38 C40 C42 C44 C46 C48 C50	3.165 7.994 16.776 39.995 81.535 137.387 154.628 121.159 85.106 77.706 83.290 97.794 115.869	8.115 23.682 44.866 93.847 199.834 306.076 365.900 313.349 255.749 224.163 229.642 252.572 299.323	0.27 0.68 1.42 3.39 6.91 11.65 13.11 10.27 7.22 6.59 7.06 8.29 9.82	5.05 8.09 8.36 38.58 -9.36 8.95 12.04	13.00 17.95 15.60 2.82 4.11 10.75 10.16	7.49 -42.53 30.70 -2.35 16.83 69.47 -30.93	4.10 12.02 20.50 16.16 19.83	-0.74 4.35 7.94 -52.1 43.4 82.5 -36.4 4.20 42.6

Figura 4. Exemplo de relatório personalizado no navegador Chromeleon CDS para uma amostra de manteiga clarificada (A) e gordura de manteiga adulterada (B)

Conclusões

Os resultados obtidos nos experimentos realizados demonstram que o GC TRACE série 1600, em combinação com o FID e o PTV de injeção em frio em coluna e equipado com o amostrador automático de líquidos AI/AS 1610, representa uma configuração de baixo custo (com Nitrogênio como gás de arraste) e confiável para a elaboração de perfis de triglicerídeos em leite e produtos lácteos, permitindo a identificação de gorduras estranhas adicionadas com fins fraudulentos.

- O uso da injeção de PTV no modo em coluna garante a injeção eficiente de analitos na coluna, eliminando a possível discriminação de compostos.
- O baixo sangramento da coluna metálica TraceGOLD combinado com sua alta temperatura de operação garante uma separação cromatográfica adequada em conformidade com o método ISO/IDF.
- A robustez do amostrador automático de líquidos Al/AS 1610, oferecendo uma capacidade de amostra de 155 frascos, garante operações autônomas confiáveis. Sua alta repetibilidade no manuseio de amostras combinada com a alta inércia do sistema permite resultados confiáveis e consistentes com área de pico absoluta média %RSD de 1,1 para n=9 injeções repetidas de amostra da manteiga clarificada.

 O Chromeleon CDS (em conformidade com os requisitos FDA 21 CFR parte 11) garante integridade de dados, rastreabilidade e gerenciamento de dados eficaz, permitindo o processamento, quantificação e relatórios de dados fáceis e rápidos.

Referências

- IDF emite orientações para ajudar a determinar a pureza da gordura do leite, https://fil-idf.org/news_insights/ updated-idf-guide-to-good-animal-welfare-in-dairy-production-released-2-2-2-4-2/
- ISO 17678:2010(E) [IDF 202:2010(E)] Leite e produtos Determinação da pureza da gordura do leite por análise cromatográfica gasosa de triglicerídeos (método de referência), https://www.iso.org/standard/43899.html
- ISO 17678:2019 [IDF 202:2019] Leite e produtos Determinação da pureza da gordura do leite por análise cromatográfica gasosa de triglicerídeos (método de referência), https://www.iso.org/standard/72284.html
- 4. Boletim do IDF N° 499/ 2019: Orientação sobre a aplicação prática do padrão IDF/ISO sobre a determinação da pureza da gordura do leite, https://fil-idf.org/publications/bulletin/bulletin-of-the-idf-n-499-2019-guidance-on-the-practical-application-of-idf-iso-standard-on-the-determination-of-milkfat-purity/
- Thermo Fisher Scientific, Chromeleon CDS Enterprise Conformidade, Conectividade, Confianca, BR72617-EN0718S.
- 6. Zeleny R., Bernreuther A., Linsinger T., Schimmel H, Sejerøe-Olsen B., Kramer G.N, Pauwels J., Direção da Comissão Europeia-Centro Geral de Investigação Conjunta, Instituto de Materiais de Referência e Medições, A certificação de método específico dos teores de colesterol e triglicérides de um material de referência de gordura de manteiga pura e adulterada BCR-632A e BCR-632B Relatório EUR 21316 EN, 2005.

Apêndice 1

Cálculo da pureza da gordura do leite usando valores-S: Equação 1

Adulteração por soja, girassol, azeitona, semente de canola, linhaça, gérmen de trigo, gérmen de milho, semente de algodão, óleo de peixe:

S = 2,0983 * wC30 + 0,7288 * wC34 + 0,6927 * wC36 + 0,6353 * wC38 + 3,7452 * wC40 - 1,2929 * wC42 + 1,3544 * wC44 + 1,7013 * wC46 + 2,5283 * wC50

Limites-S: 98,05-101,95

Equação 2

Adulteração por gordura de coco e palmiste:

S = 3,7453 * wC32 + 1,1134 * wC36 + 1,3648 * wC38 + 2,1544 * wC42 + 0,4273 * wC44 + 0.5809 * wC46 + 1.2926 * wC48 + 1,0306 * wC50 + 0,9953 *w C52 + 1,2396 * wC54

Limites-S: 99,42-100,58

Equação 3

Adulteração por óleo de palma e sebo bovino:

S = 3,6644 * wC28 + 5,2297 * wC30 - 12,5073 * wC32 + 4,4285 * wC34 - 0,2010 * w C36 + 1,2791 * wC38 + 6,7433 * wC40 - 4,2714 * wC42 + 6,3739 * wC46

Limites-S: 95,90-104,10

Equação 4

Adulteração por banha:

S = 6,5125 * wC26 + 1,2052 * wC32 + 1,7336 * wC34 + 1,7557 * wC36 + 2,2325 * wC42 + 2,8006 * wC46 + 2,5432 * wC52 + 0,9892 * wC54

Limites-S: 97,96-102,04

Equação 5

Falha no resultado total:

S = - 2,7575 * wC26 + 6,4077 * wC28 + 5,5437 * wC30 - 15,3247 * wC32 + 6,2600 * wC34 + 8,0108 * wC40 - 5,0336 * wC42 + 0,6356 * wC44 + 6,0171 * wC46

Limites-S: 95.68-104.32

thermoscientific

Apêndice 2

Valores-S calculados para amostra de manteiga clarificada e gordura de manteiga adulterada

Replicar número	Limites-S para soja, girassol, oliva, semente de canola, linhaça, gérmen de trigo, gérmen de milho, semente de algodão, óleo de peixe: 98,05–101,95	Limites-S para gordura de coco e palmiste: 99,42–100,58	Limites-S de óleo de palma e sebo bovino: 95,90–104,10	Limites-S para banha: 97,96–102,04	Limites-S totais: 95,68–104,32				
Valores-S calculados na amostra de manteiga clarificada									
Réplica 1	100,80	99,86	100,86	99,82	101,03				
Réplica 2	100,66	99,86	100,75	99,96	100,98				
Réplica 3	100,74	99,97	100,11	99,86	100,24				
Réplica 4	100,75	99,85	100,72	99,95	100,84				
Réplica 5	100,74	99,88	100,68	99,93	100,84				
Réplica 6	100,67	99,96	100,28	100,00	100,35				
Réplica 7	100,70	99,84	110,78	99,81	100,99				
Réplica 8	100,65	99,92	100,40	100,04	100,48				
Réplica 9	100,60	99,85	100,65	99,96	100,82				
%RSD	0,05	0,05	0,25	0,08	0,29				
Valores-S calculados em gordura de manteiga adulterada									
Réplica 1	100,00	100,76	97,82	100,21	97,27				
Réplica 2	99,94	100,76	97,60	100,22	97,08				
Réplica 3	99,94	100,78	97,62	100,25	97,03				
Réplica 4	99,90	100,71	97,25	100,26	96,60				
Réplica 5	99,87	100,76	97,39	100,32	96,79				
%RSD	0,05	0,03	0,23	0,04	0,27				

Saiba mais em thermofisher.com/tracegc

